
TANGENT LINE APPROXIMATIONS

In this discussion, we will return to what motivated our exploration of derivatives in the first place – the
fact that a function y = f(x) is differentiable at a point (a, f(a))when there exists a line y = Ta(x) having
the following properties:

• The graph of Ta passes through the point (a, f(a)).

• The graph of Ta provides an increasingly good approximation to the graph of f as input values for x
approach x = a.

This line, when it exists, is called the tangent line to the graph of f at the point (a, f(a)); the slope
of this line is called the derivative of f at x = a. We have chosen to make tangent lines important simply
because it is easier to work with linear functions than it is to work with any other type of function. This
was especially true in the days before graphing calculators made it relatively simple to sketch functions.

Example 1 Suppose that a contractor needs to paint a hemispheric dome that has a radius of fifty feet.
Furthermore, suppose that the paint must be applied to a thickness of at most 0.1 inches at any point on the
dome. What is the volume of paint (in cubic feet) needed to paint the dome?

Solution. We can approach this problem in two ways – directly by using only the volume formula for a
hemisphere, and indirectly using calculus. Let’s consider the direct approach first. If we let R represent
the radius of a hemisphere, measured in feet, and let V be the volume of the hemisphere, measured in cubic
feet, then we know

V = f(R) =
2πR3

3

To tackle this problem directly, we need to consider two domes – one having radius 50 feet, and the other
having radius 50.00833 feet (where .00833 feet is the maximum allowed thickness of the paint).

The volume of paint required will be the difference in the volumes of these two hemispheres. In
symbols,

∆V = f(50.00833)− f(50) =
2π

3

(
50.008333 − 503

)
≈ 130.869 cubic feet

**********
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With today’s calculator technology, obtaining a numeric solution to this problem is not very diffi cult.
However, a generation ago this would not have been the case. We can take advantage of the differentiablility
of the volume function to make approximating the solution easier. To begin, note that

f(50) =
2π

3
· (50)3 =

250000

3
π cubic feet f ′(50) = 2π · (50)2 = 5000π cubic feet per radius foot

With this in mind, we can construct the tangent line to the graph of f at the point (50, f(50)). This tangent
line is

V = T50(R) = 5000π [R− 50] +
250000

3
π

Since R = 50.00833 feet is very close to R = 50 feet, we know that the output value T50(50.00833) will be
very close to the output value f(50.00833), as the following diagram shows.

Since we know that f(50) = T50(50), this means we can obtain a very good approximation to ∆V
using only the tangent line. Observe that

∆V ≈ T50(50.00833)− T50(50)

=

(
5000π [50.00833− 50] +

250000

3
π

)
− 250000

3
π

= 5000π (.00833)

≈ 130.847 cubic feet

The advantage to this approach lies in the fact that, by using the tangent line approximation, we did
not have to compute the cube of 50.00833. Of course, by today’s calculator standards, this does not seem
very important. However, prior to 1980, computations like this required a slide rule and quite a bit of work.

Let’s take a closer look at how the two computations unfolded. First, let’s consider the direct
approach. Estimating the value of ∆V amounted to observing that

∆V = f(50 + ∆R)− f(50)

On the other hand, approximating ∆V using the tangent line to the graph of f at (50, f(50)) amounted to
observing that

∆V ≈ T50(50 + ∆R)− T50(50) = f ′(50)∆R

Now, if we rewrite the last approximation, we have a familiar relationship:

∆V

∆R
≈ f ′(50)
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Indeed, we know

f ′(50) = lim
h−→0

f(50 + h)− f(50)

h
= lim

∆R−→0

f(50 + ∆R)− f(50)

∆R
= lim

∆R−→0

∆V

∆R

Notice that the formula f ′(50)∆R, while only an approximation to the actual change in volume, is
exactly equal to the change in output for the tangent line. Since we have already used ∆V to represent the
actual change in volume, it has become customary to let dV denote the change in the output of the tangent
line. Under this custom, we have

∆V ≈ dV = f ′(50)∆R

Furthermore, since the change in the input values of R is the same for both the volume function f and the
tangent line, it has become customary to let dR = ∆R when we are working with the tangent line.

DIFFERENTIAL NOTATION

• Suppose that y = f(x) is a differentiable function. The formula dy = f ′(x)dx is called the differential
of y. In practical terms, it gives the change in the output of the tangent line to the graph of f at the
point (x, f(x)) for a specified change dx in the input value x. The differential formula is often used
to approximate changes in the output of the function f for very small changes in the input value x.

Example 2 A surveyor needs to compute the area of a plot of land in the shape of an isoceles right triangle.
Her instruments have a tolerance (maximum error range) of ±0.001 feet. If she finds one leg of the triangle
to have a length of 400 feet, determine the true error in the computed area of the plot, then use differentials
to approximate the error in the computed area of the plot.

Solution. We know that the area A in square feet of the plot will be given by the formula

A = f(x) =
x2

2

where x is the length in feet of (both) the base and height of the triangle. The actual error in the area of
the plot would be given by

∆A = f(400.001)− f(400) =
1

2

(
400.0012 − 4002

)
≈ 0.4000005 square feet

Now, we know the differential for A is the formula dA = f ′(x)dx; and since f ′(x) = x, we know dA = xdx.
If we let dx = ∆x = .001 feet, then the maximum error ∆A in the area of the plot is approximated by

∆A ≈ dA = 400 (.001) = 0.4 square feet

**********

Example 3 Suppose the equatorial circumference of a sphere has been measured to be 100 feet, with a
tolerance of ±0.1 foot. Use differentials to estimate maximum computed error and relative error in the
volume of the sphere.

Solution. We need a formula that relates the volume of a sphere to its equatorial circumference. Let
V represent the volume, in cubic feet, of the sphere, and let C represent the circumference, in feet, of the
sphere. We know that the volume and equatorial circumference are both related to the radius R of the
sphere (measured in feet) according to the formulas

C = 2πR V =
4πR3

3
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Consequently, we can write V as a function of C according to the formula

V = f(C) =
4π

3

(
C

2π

)3

=
C3

6π2

Now, the differential of this formula will be

dV = f ′(C) · dC =
C2

2π2
· dC

To estimate the maximum computed error in the volume, we let dC = 0.1 feet, and we let C = 100 feet.
The maximum computed error in the volume will be

∆V ≈ dV =

(
1002

2π2

)
· (0.1) ≈ 50.661 cubic feet

This may seem like a lot, but considering the relative error puts things in better perspective:

Relative Error:
∆V

V
≈ 50.661

5375.256
≈ 0.009

The maximum computed error is at most about nine one-thousandths of the computed volume.

**********

HOMEWORK: Section 3.10, Page 257, Problems 33, 34, 35, 36, and 38
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