
CHAPTER 1 – FUNDAMENTALS

1 The Principle of Induction

We open this chapter with a discussion of the integers. This topic is typically seen in a course on elementary
number theory, but its consequences are important enough to our purposes to warrant including some of it
here. In all that follows, we will assume the familiar properties of integer addition and multiplication. It
is customary to denote the set of all integers by the symbol Z, a stylized form of the first letter in “zahlen,”
the German word for “numbers.”. It is also customary to let Z+ denote the set of positive integers (the
so-called counting numbers) and to let Z∗ denote the nonzero integers. There are no universally accepted
symbols for the negative integers or the so-called nonnegative integers (the set Z+∪{0}). In these notes, we
will let Z− denote the negative integers and will letW denote the nonnegative integers (which are sometimes
called whole numbers).

Suppose that S ⊆ Z+ contains the number 1. Suppose further that, whenever we know k ∈ S, we
can somehow prove that k + 1 ∈ S. What can we conclude about the set S? Since we know 1 ∈ S, our
assumption tells us that we can prove 2 ∈ S. Since we know 2 ∈ S, we can prove that 3 ∈ S, and so on,
progressing through the positive integers. It seems reasonable to claim that S must contain every positive
integer. Of course, we cannot prove such a claim by the “stepping”method the properties of S provide; we
can only show with certainty that S contains every positive integer up to n + 1. However, we can do this
for any n ∈ Z+; and this does provide compelling evidence that S contains every positive integer. We will
choose to assume that this is the case by imposing an axiom on the positive integers.

Axiom 1 (Principle of Induction)
If S ⊆ Z+ has the properties that

1. 1 ∈ S

2. If k ∈ S, then k + 1 ∈ S

then S = Z+.

The Prinicple of Induction is one of the foundational axioms on which the set of integers along with
integer addition, multiplication, and subtraction are formally constructed. This process, while interesting
in its own right, is not germane to our purposes and will be left for another course. The Principle of
Induction provides us with a powerful proof technique called the method of mathematical induction. Here
is a summary of what the method is and how it works.

Suppose you have a proposition P concerning the positive integers. Let S be the set of all positive
integers for which P is true. If you can prove that S satisfies Conditions (1) and (2) of the Principle of
Induction, then you may conclude that S contains every positive integer. That is, you may conclude that
the proposition P holds true for every positive integer. Let’s consider an example of this method in action.

Example 2 Prove that for any positive integer n, we have

n∑
j=1

j =
n(n+ 1)

2

Solution. Note that we have a proposition P concerning the positive integers – we claim that for every
positive integer n, the equation

1 + 2 + 3 + ...+ n =
n(n+ 1)

2
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is true. For a proof by mathematical induction, let S denote the set of all positive integers for which P holds
true. We want to prove that S = Z+. We will do this by proving that S satisfies the two conditions of the
Principle of Induction. First, note that, if n = 1, then we have

1∑
j=1

j = 1 =
(1)(1 + 1)

2

Thus, P holds true when n = 1, and we therefore know that 1 ∈ S. The first condition of the Principle of
Induction has been met. Next, suppose that k ∈ S. (This assumption is called the induction hypothesis.)
To meet the second condition, we must somehow prove that this allows us to conclude k + 1 ∈ S. Now,
assuming k ∈ S means that the proposition P holds true for k. In other words, we are assuming that

k∑
j=1

j =
k(k + 1)

2

We must use this assumption to establish that proposition P also holds true for k + 1. Observe that

k+1∑
j=1

j = 1 + 2 + ...+ k + k + 1 = (1 + 2 + ...+ k) + (k + 1) (Integer addition is associative.)

=

k∑
j=1

j + (k + 1)

=
k(k + 1)

2
+ (k + 1) (Proposition P holds true for k.)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)[(k + 1) + 1]

2

We have established that assuming proposition P holds true for k allows us to prove proposition P holds true
for k + 1. We have therefore shown that IF k ∈ S, THEN k + 1 ∈ S; and Condition (2) of the Principle of
Induction has been met. We may conclude that S = Z+; in other words, we may conclude that proposition
P holds true for all positive integers.

**********

When we are using the method of mathematical induction, we usually do not take the time to
explicitly identify the set S, although there is nothing wrong with doing so. Here is an example of how a
seasoned mathematician would go about using the method of induction.

Example 3 Prove that any nonempty n-element set X has exactly 2n subsets.

Solution. We will accomplish this proof by mathematical induction on the number of elements in X.
Suppose that X is any set that contains exactly one element. It follows that X is a singleton and therefore
has exactly two subsets, namely X and ∅. Consequently, when X contains exactly one element, we know
that X has exactly 21 subsets.

Suppose now that any set X containing exactly k elements has exactly 2k subsets. Let Y be any set
containing exactly k+ 1 elements, and let a ∈ Y . It follows that X = Y − {a} contains exactly k elements;
hence, we know by assumption that X has exactly 2k subsets. Suppose that U ⊆ Y . Either a ∈ U or
a /∈ U . If a /∈ U , then we know that U ⊆ X. If a ∈ U , then there is exactly one V ⊆ X such that
U = V ∪ {a} (namely the set V = U − {a}). Consequently, Y must have exactly 2k subsets which do not
contain a and must have exactly 2k subsets which do contain a. Therefore, we may conclude that Y has
exactly 2k + 2k = 2(2k) = 2k+1 subsets. We have thus proven the statement by mathematical induction.
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**********

The specific arguments used in Example 2 differ considerably from those used in Example 1, but the
method remains the same. In Example 2, our set S is the collection of all positive integers for which the
desired conclusion holds true. That is, n ∈ S if and only if every set containing exactly n elements has
exactly 2n subsets. We establish that 1 ∈ S in the first paragraph of the proof. We state our induction
hypothesis in the first sentence of the second paragraph. The remainder of the second paragraph establishes
a link between our induction hypothesis and sets with k + 1 elements.

There is a useful variation on the Principle of Induction, known as the Principle of Total Induction, which
is sometimes more convenient to use.

Axiom 4 (Principle of Total Induction)
If S ⊆ Z+ has the properties that

1. 1 ∈ S

2. If 1 ≤ m ≤ n ∈ S, then n+ 1 ∈ S

then S = Z+.

The only difference between the Axiom of Induction and the Axiom of Total Induction lies in the
conditional criterion. Under the Axiom of Induction, we must establish that n ∈ S implies n + 1 ∈ S.
However, under the Axiom of Total Induction, we must establish that the collection {1, 2, ..., n− 1, n} ⊆ S
implies that n+1 ∈ S. This might seem harder to do, but there are circumstances where Total Induction is
an easier assumption to work with. Fortunately, the Axiom of Total Induction is logically equivalent to the
Axiom of Induction. This means that we can assume the Axiom of Induction and prove the Axiom of Total
Induction as a theorem, or we can assume the Axiom of Total Induction and prove the Axiom of Induction
as a theorem. The next two results establish this equivalence.

Theorem 5 The Principle of Induction implies the Principle of Total Induction.

We will assume the Axiom of Induction is true and prove the Axiom of Total Induction as a theorem. To this
end, assume S ⊆ Z+ meets the two criteria of the Axiom of Total Induction. We will use our assumption
that the Axiom of Induction is true to prove that S = Z+. Now, assuming that S meets the two criteria of
the Axiom of Total Induction means

Axiom 6 1. 1 ∈ S

2. If 1 ≤ m ≤ n ∈ S, then n+ 1 ∈ S

Does S meet the two criteria for the Axiom of Induction? The first criterion (1 ∈ S) is clearly met.
What about the second criterion? If we only know that n ∈ S, are we able to deduce that n + 1 ∈ S?
In order to deduce this, we must first know that the collection 1 ≤ m ≤ n is a subset of S. To this end,
suppose that n ∈ S. We know that 1 ∈ S; consequently, the collection 1 ≤ m ≤ 1 is a subset of S. This
allows us to conclude that 2 ∈ S. Now, we know that the collection 1 ≤ m ≤ 2 is a subset of S; hence,
we may conclude that 3 ∈ S. Proceeding in this way, we may conclude that the collection 1 ≤ m ≤ n is a
subset of S. Consequently, we may deduce that n ∈ S implies n + 1 ∈ S. Thus, the two criteria for the
Axiom of Induction are met; and we may conclude that S = Z+.

QED

Theorem 7 The Principle of Total Induction implies the Principle of Induction.

3



We will assume the Axiom of Total Induction is true and prove the Axiom of Induction as a theorem. To
this end, assume S ⊆ Z+ meets the two criteria of the Axiom of Induction. We will use our assumption that
the Axiom of Total Induction is true to prove that S = Z+. Now, assuming that S meets the two criteria
of the Axiom of Induction means

Axiom 8 1. 1 ∈ S

2. If n ∈ S, then n+ 1 ∈ S

Does S meet the two criteria for the Axiom of Total Induction? The first criterion (1 ∈ S) is clearly
met. What about the second criterion? If we know that the collection 1 ≤ m ≤ n is a subset of S, are we
able to deduce that n+ 1 ∈ S? Well, if this collection is a subset of S, then it is certainly true that n ∈ S.
Consequently, we may conclude that n+ 1 ∈ S; and the two criteria for the Axiom of Total Induction have
been met. We may conclude that S = Z+.

QED

Many people find the Principle of Induction to be a little fishy since its application requires something
of a “leap of faith”. There is another axiom frequently associated with the set of positive integers which is
more intuitively palatable and quite useful in its own right.

Definition 9 A nonempty subset X of real numbers is well-ordered provided every nonempty subset of X
has a smallest element.

There are many sets of real numbers which definitely are not well-ordered. For example, the set of
negative integers is not well-ordered, since the set itself clearly has no smallest element. Likewise, the
interval [0, 1] is not well-ordered, since the subset

S =

{
1

n
: n ∈ Z+

}
has no smallest element. It is much harder to prove that a particular subset is well-ordered.

Axiom 10 (Well-Ordering Principle)
The set of positive integers is well-ordered.

We take the Well-Ordering Principle as an axiom for the positive integers since it is clearly impossible
to check every nonempty subset for this property; however, it certainly makes sense. It comes as a shock to
many that the Well-Ordering Principle is actually logically equivalent to the Principle of Induction. That is,
we can assume the Principle of Induction for the positive integers and prove that the Well-Ordering Principle
holds true as a theorem, or we can assume the Well-Ordering Principle holds true for the positive integers
and prove that the Principle of Induction holds true as a theorem. Let’s take a look at how these proofs go.
We will present one here and leave the other as an exercise.

Theorem 11 The Principle of Induction implies the Well-Ordering Principle.

Proof. We will assume that the Axiom of Induction is true and prove that every nonempty subset of
positive integers has a least element. To this end, let S be a subset of positive integers that has no smallest
element. We will prove that S must be empty. Let T = Z+−S. It will suffi ce to prove that T = Z+. Now,
either 1 ∈ S, or 1 ∈ T . Since 1 is the smallest positive integer, it would clearly be the smallest member of
S if it were a member of S. We may therefore conclude that 1 ∈ T .

As our induction hypothesis, suppose that n is a positive integer and suppose that the collection
1 ≤ m ≤ n is a subset of T . Consider the integer n + 1. If n + 1 ∈ S, then our assumption that
{1, 2, ..., n− 1, n} ⊆ T forces us to conclude that n + 1 is the smallest member of S – contrary to our
assumption that S has no smallest member. We must therefore conclude that {1, 2, ..., n− 1, n} ⊆ T implies
n+ 1 ∈ T . The Axiom of Total Induction therefore allows us to conclude that T = Z+, as desired.
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QED

Notice that we used the Principle of Total Induction in the last proof rather than the Principle of
Induction. Since these axioms are equivalent, there is no problem with this strategy. Furthermore, it is
quite a bit harder to prove this theorem using only the Principle of Induction. (Try it yourself.)

EXERCISES FOR SECTION 1

1. Is the interval [1, 2] well-ordered?

2. Is the set of positive prime numbers well-ordered?

3. Is the empty set well-ordered?

4. Suppose that X is a nonempty set of real numbers and let Y ⊆ X be nonempty. Prove that if X is
well-ordered, then Y is well-ordered.

5. Is the converse of Problem 4 also true?

6. Use the Principle of Induction to prove that

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6

7. Use the Principle of Induction to prove that

n∑
j=1

j3 =
n2(n+ 1)2

4

8. Let r be any real number other than 1. Use the Principle of Induction to prove that, for any positive
integer n, we have

n∑
j=0

rj =
rn+1 − 1
r − 1

9. Prove that the Well-Ordering Principle implies the Principle of Induction. Hint: Suppose that T ⊆ Z+
satisfies the two criteria for the Principal of Induction. Assume that S = Z+ − T is not empty and
use the Well-Ordering Principle to obtain a contradiction.

10. For any fixed integer m, prove that the set X = {a ∈ Z : m ≤ a} is well-ordered. (This is called the
Generalized Well-Ordering Principle.) Hint: For any nonempty Y ⊆ X, consider the set S = {b−m :
b ∈ Y }.

2 Divisibility

In this section, we will investigate the notion of divisibility in the integers. To begin, we will say that a
nonzero integer a divides an integer b provided there exists an integer k such that b = ak. When this is the
case, we will refer to a as a factor of b and say that b is a multiple of a. It is customary to use the notation
a|b to indicate that a divides b.

For example, we know that 6|24 since 24 = 6 ·4 and we know that 9|72 since 72 = 9 ·8. We know that
8 does not divide 12 since there is no integer k such that 12 = 8k. NOTE: The symbol a|b does not have the
same meaning as the symbol a/b. When necessary, we will use a/b to represent the fraction a divided by b.
The symbol a|b represents a statement about a relationship between a and b (namely that a is a factor of b)
while the symbol a/b represents a number.The theorem below lists many of the fundamental properties the

concept of divisibility brings to the table. We will present proofs for three and leave the rest as exercises.
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Theorem 12 Let a, b, and c be arbitrary integers.

1. Every nonzero integer divides itself.

2. The integer 1 divides every integer.

3. Every nonzero integer divides 0.

4. If a|b and b|c, then a|c.

5. We have a|b if and only if a|(−b).

6. If a|b and a|c, then a|(bx+ cy) for any integers x and y.

7. We have a|b if and only if (−a)|b.

8. If a|b and b|a, then a = ±b.

Proof. Let us prove Claim 4. Suppose that a|b and b|c. We want to prove that a|c. This means that we
must find an integer k such that c = ak. By assumption, there exist integers m and n such that b = am and
c = bn. Consequently, we know that

c = bn =⇒ c = (am)n =⇒ c = a(mn)

since integer multiplication is associative. We can let k = mn.

Let us prove Claim 5. Since Claim (5) is an “if and only if”statement, we know that it is actually two
conditional statements: IF a|b THEN a|(−b) and IF a|(−b) THEN a|b. We must prove both statements.
First, suppose that a|b. This there exists an integer m such that b = am. Consequently, since −b = (−1)b,
we know that

−b = (−1)b =⇒ −b = (−1)(am) =⇒ −b = a(−1)(m) =⇒ −b = a(−m)
since integer multiplication is both commutative and associative. Hence, we know that −b = ak for some
integer k; and we may conclude that a|(−b). Conversely, suppose that a|(−b). There exists an integer k
such that −b = ak. Since b = (−1)(−b), we know that

b = (−1)(−b) =⇒ b = (−1)(ak) =⇒ b = a(−1)(k) =⇒ b = a(−k)

since integer multiplication is both commutative and associative. Hence, we know that b = am for some
integer m; and we may conclude that a|b.

Let us prove Claim 8. Suppose that a|b and b|a. It follows that there exist integers m and n such
that b = am and a = bn. It follows that a = a(mn). This is certainly true if a = 0, but our assumption that
a|b precludes this possibility. Since a 6= 0, we know that mn = 1; and, since both m and n are integers, this
tells us that m = n = ±1. Since a = bn, we may conclude that a = ±b, as desired.

QED

The next result, known as the Division Algorithm is one of the most important properties of the
integers. It verifies an observation we have all used since elementary school – When you divide one integer
into another, you get a quotient plus a remainder. For example, when we divide 24 by 9, we get a quotient
of 2 and a remainder of 6. In elementary school, we were taught to say that “9 goes into 24 two times, with
6 left over.”This sentence translates into symbols as 24 = 2 · 9 + 6.

The proof of the Division Algorithm is a classic example of another way the Well-Ordering Principle
is used in mathematical arguments. (It actually uses the Generalized Well-Ordering Principle appearing in
Exercise 1.1.10.)

Theorem 13 Let m ∈ Z+ be fixed. If x ∈ Z, then there exist unique q, r ∈ Z such that x = qm + r and
0 ≤ r < m.
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Proof. Consider the set S = {x−nm : n ∈ Z}. We will first prove that S contains at least one nonnegative
integer. If x is itself nonnegative, then this claim is obviously true – just let n = 0. If x < 0, then let
n = xm. In this case, we know that xm < 0, and we know that

x− xm = x(1−m) ≥ 0

Since S always contains at least one nonnegative integer, we may consider the collection T = {u ∈ S : u ≥ 0}.
This set is nonempty which means T contains a smallest element by the Generalized Well-Ordering Principle.
Call this element r. It is clear that r = x− qm for some integer q, hence, we know that x = qm+ r. Since
r ∈ T , it is clear that 0 ≤ r.

Suppose by way of contradiction that m ≤ r. Consider the integer y = r−m. Since we know m > 0,
our assumption tells us that r > y ≥ 0. Furthermore, we know that

y = r −m =⇒ y = (x− qm)−m =⇒ y = x− (q + 1)m

Therefore, we know that y ∈ T . However, this is impossible, since r is the smallest member of T . Conse-
quently, we are forced to conclude that r < m.

To complete the proof, we need to show that the integers q and r are unique. To this end, suppose
there also exist integers u and v such that x = um + v and 0 ≤ v < m. It will suffi ce to prove that q = u
and r = v. Without loss of generality, we may assume that u ≤ q. Observe that

qm+ r = um+ v =⇒ (q − u)m+ (r − v) = 0

Since m > 0, our assumption that u ≤ q forces us to conclude that (q − u)m ≥ 0. Therefore, the last
equation above tells us that r − v ≤ 0; hence, we may conclude that r ≤ v. Now, we also know that

v < m =⇒ v < m+ r =⇒ 0 ≤ v − r < m

Since the equation (q− u)m+ (r− v) = 0 tells is that v− r = (q− u)m, we are now forced to conclude that
v − r = 0 and q − u = 0. This tells us that q = u and r = v, as desired.

QED

The Division Algorithm is, strictly speaking, not an algorithm. An algorithm is actually a step-by-step
procedure for carrying out a particular operation or finding a particular result. The so-called division
algorithm tells us that we can represent any integer as a quotient times an integer plus a remainder, but
it provides no procedure for finding the quotient or remainder. The division algorithm is an example of an
existence theorem – it tells us that the quotient and remainder exist, but does not directly tell us how to
obtain them.

Definition 14 Let a and m be integers. We say that an integer c is a common factor of a and m provided
c|a and c|m.

Common factors are often called common divisors. There can be only finitely many common factor for
any pair of integers in which at least one is nonzero; hence, every such pair of integers must have a greatest
common factor. Since 1 is a common factor of any pair of integers, it follows that the greatest common
factor of two integers (in which at least one is nonzero) is always positive. We will let GCF(m,n) denote the
greatest common factor of integers m and n.

Theorem 15 Let a and m be integers with m 6= 0. If b is the greatest common factor of a and m, then
there exist integers x and y such that b = ax+my.
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Proof. First, let S = {ax+my : x, y ∈ Z}. There exist integers x and y such that ax+my > 0 (consider
a+m or −(a+m)). Consequently, the set S ∩Z+ is nonempty and therefore has a smallest element by the
Well-Ordering Principle. Let c = ax0 +my0 be the smallest positive integer combination of a and m. We
will prove that c = b. We first prove that c is a common factor of a and m. The Division Alorithm tells us
that there exist unique integers q and r such that 0 ≤ r < c and m = qc+ r. Observe that

m = qc+ r =⇒ m = q(ax0 +my0) + r =⇒ r = aqx0 +m(qy0 − 1)

Now, since 0 ≤ r < c, we know that aqx0+m(qy0−1) < c. Therefore, since c is the smallest positive integer
combination of a and m, we may conclude that r = 0. Hence, c is a divisor of m. A similar argument
shows that c is a divisor of a as well.

Now, suppose that k is any common factor of a and m. We only need to show that k is a factor of
c. However, this is easy, since we know there exist integers t and u such that a = kt and m = ku. Indeed,
this fact tells us that

c = ax0 +my0 = k(tx0 + uy0)

We may therefore conclude that c = b, as desired.

QED

Observe that GCF(20, 30) = 10. The previous theorem tells us that there must exist integers x and y
such that 10 = 20x+ 30y. The theorem does not provide a direct way to determine these integers, but we
can find some by trial and error. Indeed, observe that

10 = 20(−1) + 30(1) 10 = 20(−4) + 30(3) 10 = 20(8) + 30(−5)

We will conclude this section with a brief introduction to modular arithmetic, an application of the
Division Algorithm which, first introduced by C.F. Gauss in the early 1800’s, will be a great source of
examples in the next chapter.

Definition 16 Let n be a fixed positive integer and let a and b be arbitrary integers. We say that a is
congruent to b modulo n provided n|(a− b). We write a ≡ b MOD(n) if this is the case.

For a, b ∈ Z and n ∈ Z∗, we know Theorem 7 above that n|(a− b) if and only if (−n)|(a− b); hence,
our assumption that n be positive in the definition above is a matter of custom. As a few examples, note
that 2 ≡ 8 MOD(3) since 3|(2 − 8). Likewise, note that 4 ≡ −10 MOD(7) since 7|(4 − (−10)). The following
result is a direct consequence of Theorem 7; hence, we will leave it as an exercise.

Lemma 17 Let n be a fixed positive integer. For all integers a, b, and c, we have

1. a ≡ a MOD(n)

2. a ≡ b MOD(n) if and only if} b ≡ a MOD(n)

3. If a ≡ b MOD(n) and b ≡ c MOD(n), then a ≡ c MOD(n).

Theorem 18 Let n be a fixed positive integer and let a and b be arbitrary integers. We have a ≡ b MOD(n)
if and only if a and b have the same remainder when divided by n.
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Proof. Suppose that a ≡ b MOD(n). This implies that there exists an integer k such that a− b = kn. Now,
by the Division Algorithm, we know that there exist integers q and r such that a = qn + r and there exist
integers p and ssuch that b = pn+ s. It will suffi ce to prove that r = s. We know that

kn = a− b =⇒ kn = (q − p)n+ (r − s)

Now, the Division Algorithm also tells us that there exist integers u and v such that a− b = un+ v, where
0 ≤ v < n. Furthermore, these integers are unique. Therefore, since we know that

a− b = kn+ 0 a− b = (q − p)n+ (r − s)

we may conclude that r− s = 0 (and that q− p = k for that matter). This, of course, tells us that r = s as
desired.

Conversely, suppose that a and b have the same remainder when divided by n. By the Division
Algorithm, this implies that there exist integers q and p and an integer 0 ≤ r < n such that a = qn+ r and
b = pn+ r. Hence, we know

a− b = (q − p)n

We may therefore conclude that a ≡ b MOD(n).

QED

We will use the previous theorem quite a bit in the next chapter. In fact, it gives us the perspective
we normally use when working with modular arithmetic. As an example of this theorem in action, we know
that 22 = 2 · 8 + 6 and 78 = 9 · 8 + 6; hence, we also know automatically that 22 ≡ 78 MOD(8). Likewise, we
know that 218 ≡ 38 MOD(20), since 218− 38 = 180 and 20|180. Consequently, we know automatically that
218 and 38 leave the same remainder when divided by 20. A quick check shows that the remainder is 18 for
both.

In light of the previous theorem, when working with congruences, it is common to reduce the right-
hand side to the remainder. For example, instead of writing 218 ≡ 38 MOD(20), we would usually reduce
this to 218 ≡ 18 MOD(20). It is correct to write either, but reducing to the remainder will have some
distinct advantages in the next chapter. The previous theorem also allows us to develop some basic modular
arithmetic as well.

Corollary 19 Let n be a fixed positive integer and let a,b, c, and d be integers. If a ≡ b MOD(n) and c ≡ d
MOD(n), then a+ c ≡ b+ d MOD(n) and ac ≡ bd MOD(n).

Proof. Let r be the remainder obtained when a and b are divided by n, and let s be the remainder when c
and d are divided by n. There exist integers q and p such that a = qn + r and b = pn + r. Likewise, there
exist integers u and v such that c = un+ s and d = vn+ s. Now, we know that

a+ c = (q + u)n+ (r + s) b+ d = (p+ v)n+ (r + s)

There exist unique integers x and y such that r + s = xn + y, where 0 ≤ y < n. Hence, we know that
a + c and b + d have the same remainder (namely y) when divided by n. We may therefore conclude that
a+ c ≡ b+ d MOD(n).

The proof for multiplication is similar and will be left as an exercise.

QED

Modular addition and multiplication have a number of uses. We will explore only a few of them here;
many more can be found in texts on number theory. We conclude this section by considering two simple
examples.
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A Fermat number is an integer having the form Fn = 22
n

+ 1 for some positive integer n. Pierre
Fermat introduced the Fermat numbers in his attempts to devise a method for generating prime numbers.
He noticed that

F1 = 5 F2 = 17 F3 = 257 F4 = 65, 537

are all prime (no mean feat for a person living in the 1600’s). He then claimed that all such numbers are
prime, but offered no proof. It turns out that he was incorrect. In fact, the very next Fermat number is
composite, although it is so large that direct computation makes this almost impossible to determine directly.
We will instead use modular arithmetic to help us. We will show that 641 divides this huge number without
actually computing it.

Example 20 Use modular arithmetic to show that 232 + 1 ≡ 0 MOD(641).

Solution. Observe that 28 = 256 is the largest positive integer power of 2 smaller than 641. Hence, we
know that 28 ≡ 256 MOD(641). Consequently, we know

28 · 28 ≡ 2562 MOD(641) =⇒ 216 ≡ 154 MOD(641)

since a quick computation shows that 2562 = 102 · 641 + 154. Therefore, we also know that

216 · 216 ≡ 1542 MOD(641) =⇒ 232 ≡ 640 MOD(641)

since a quick computation shows that 1542 = 36 · 641 + 640. It now follows that

232 + 1 ≡ 640 + 1 MOD(641) =⇒ 232 + 1 ≡ 0 MOD(641)

**********

As another example, let’s consider a rule about divisibility we learned in elementary school: A positive
integer n is divisible by 3 if and only if the sum of its digits is divisible by 3. For example, we know that 39
is divisible by 3 because 3 + 9 = 12 is divisible by 3. Why is this rule true? Modular arithmetic provides a
quick answer.

Example 21 Use modular arithmetic to prove that a positive integer is divisible by 3 if and only if the sum
of its digits is divisible by 3.

Solution. Let n be a positive integer, and let dk be the digit in the 10k position of n (0 ≤ k < m for some
positive integer m). Then we know that

n = d0 + d1 · 10 + d2 · 102 + ...+ dm−1 · 10m−1

Now, since 10 ≡ 1 MOD(3), we know that dk · 10k ≡ dk MOD(3). Therefore, we see that

n ≡
[
d0 + d1 · 10 + d2 · 102 + ...+ dm−1 · 10m−1

]
MOD(3) =⇒ n ≡ [d0 + d1 + d2 + ...+ dm−1] MOD(3)

Consequently, n is divisible by 3 if and only if the sum of its digits is divisible by 3.

**********

EXERCISES FOR SECTION 2

1. Prove Claims (1), (2), and (3) of Theorem 7.

2. Prove the remaining claims of Theorem 7.
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3. Prove Lemma 12.

4. Explain why it is necessary to assume at least one integer is nonzero when discussing the greatest
common factor of two integers.

5. Let m be an odd integer. Prove that 4|(m2 − 1). (Thus, an odd square is always 1 larger than a
multiple of 4.)

6. Prove that any positive integer n is divisible by 9 if and only if the sum of its digits is divisible by 9.

7. What conditions on the digits guarantee that a positive integer is divisible by 11?

8. Use modular arithmetic to find the remainder when 340 is divided by 23. Hint: 36 ≡ −7 MOD(23).

9. Prove that 237 − 1 is divisible by 223.

10. Let n ∈ Z+ be fixed and let a, b, c, d ∈ Z be such that a ≡ b MOD(n) and c ≡ d MOD(n). Prove that
ac ≡ bd MOD(n).

11. Two integers m and n are relatively prime provided GCF(m,n) = 1. Suppose that p and a are relatively
prime nonzero integers. Prove that, if b ∈ Z is such that p|(ab), then p|b. (This result is called Euclid’s
Lemma.)

12. Give an example to show that Euclid’s Lemma can fail if p and a are not relatively prime.

13. Let m ∈ Z. Use Euclid’s Lemma to prove that 2|m if and only if 2|m2.

14. Use Exercise 7 to prove that
√
2 is irrational. Hint: Assume that

√
2 = p/q, where p, q ∈ Z. Square

both sides and show that p and q have 2 as a common factor. Cancel the 2 and repeat.

15. It is customary to let Q denote the set of rational numbers. Use the Division Algorithm to prove that,
for any x ∈ Q, there exist unique m ∈ Z and r ∈ Q ∩ [0, 1) such that x = m + r. Hint: Let x = p/q
where p, q ∈ Z and use the Division Alogrithm to divide p by q.

16. Prove the following statements are true:

(a) If n is even, then GCF(n, n+ 2) = 2.

(b) If n is odd, then GCF(n, n+ 2) = 1.

17. Let n ∈ Z+ be fixed and let a, b ∈ Z be such that a ≡ b MOD(n). Prove that any common divisor of a
and n also divides b.

18. Let n ∈ Z+ be fixed and let a, b ∈ Z be such that a ≡ b MOD(n). Prove that GCF(n, a) =GCF(n, b).

19. Let n ∈ Z+ be fixed and let a, b, c ∈ Z. Prove that a ≡ b MOD(n) if and only if ac ≡ bc MOD(nc).

20. Let n ∈ Z+ be fixed and let a, b, c ∈ Z be such that ac ≡ bc MOD(n). If d =GCF(n, c), then prove that
a ≡ b MOD(n/d).

3 Relations

In this section, we will introduce one of the most important fundamental concepts used in abstract algebra
– the notion of a relation. Relations play a key role in almost everything we will do, although this role is
often subtle and easily overlooked. We begin with a definiiton.

Definition 22 Let X and Y be sets. We define the product X ×Y to be the set of all ordered pairs whose
first coordinate comes from X and whose second coordinate comes from Y . In symbols, we write

X × Y = {(a, b) : a ∈ X, b ∈ Y }

The product X ×X is often denoted by X2.

11



As a quick example, suppose that X = {a, b, c} and Y = {1, 2}. There are many products we can
form from these two sets. For example, we have

• X × Y = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}

• Y ×X = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

• X2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}

• Y 2 = {(1, 1), (1, 2), (2, 1), (2, 2)}

• X × Y 2 = {[a, (1, 1)], [a, (1, 2)], [a, (2, 1)], [a, (2, 2)], [b, (1, 1)], [b, (1, 2)], [b, (2, 1)], [b, (2, 2)],
[c, (1, 1)], [c, (1, 2)], [c, (2, 1)], [c, (2, 2)]}

Since the elements of a product are ordered pairs, we do not consider X ×Y to be equal to Y ×X unless
X = Y .

Definition 23 Let X and Y be sets. A binary relation on X and Y is any nonempty subset θ of X × Y
or Y ×X. The first coordinates of elements in θ form the domain of θ; the second coordinates form the
range of θ.

Consider the sets X = {a, b, c} and Y = {1, 2}. Since X × Y and Y ×X both contain six elements,
we know there are exactly 26− 1 = 63 nonempty subsets of each product. Consequently, we know there are
a total of 126 binary relations on X and Y . The binary relation

θ = {(a, 1), (b, 1), (b, 2)} ⊆ X × Y

has Dθ = {a, b} as its domain and has Rθ = {1, 2} as its range.

Relations play a key role in studying the structure of many mathematical objects. In the sections to
follow, we will look closely at two important types of relations, namely equivalence relations and functions.
These relations are distinguished by certain key properties they satisfy. In this section, we will introduce
these properties.

Definition 24 Let X be a set, and let θ ⊆ X2. We say θ is reflexive provided (a, a) ∈ θ for all a ∈ X.

Example 25 Let Y = {1, 2}. Which of the binary relations on Y is reflexive?

Solution. We know that Y ×Y contains fifteen nonempty subsets; hence, we know there are fifteen binary
relations on Y . Only those relations which contain (1, 1) and (2, 2) will be reflexive. Consequently, the
reflexive binary relations are

1. θ1 = {(1, 1), (2, 2)}

2. θ2 = {(1, 1), (2, 2), (1, 2)}

3. θ3 = {(1, 1), (2, 2), (2, 1)}

4. θ2 = {(1, 1), (2, 2), (1, 2), (2, 1)}

**********
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Example 26 Let R denote the set of real numbers and let

θ = {(x, y) ∈ R2 : xy > 0} α = {(x, y) ∈ R2 : x− y = 0}

Are either of these binary relations reflexive?

Solution. Notice that the set θ contains (x, x) as long as x 6= 0. The fact that (0, 0) /∈ θ is enough to show
that θ is not reflexive. On the other hand, since x− x = 0 for every real number x, we see that (x, x) ∈ α
for all x ∈ R. Therefore, we know that α is reflexive.

**********

Definition 27 Let X be a set, and let θ ⊆ X2. We say θ is symmetric provided (a, b) ∈ θ always implies
(b, a) ∈ θ.

Example 28 What are the symmetric binary relations on Y = {1, 2}?

Solution. The condition for symmetry is different in kind from that for reflexivity. Reflexivity is an
unconditional property in that (a, a) must be a member of the relation for all a ∈ Y . Symmetry is a
conditional property: IF a pair (a, b) is a member of the relation, THEN (b, a) must be as well. The
symmetric relations on Y are

θ1 = {(1, 1)} θ2 = {(2, 2)} θ3 = {(1, 1), (2, 2)}

θ4 = {(1, 2), (2, 1)} θ5 = {(1, 1), (1, 2), (2, 1)} θ6 = {(2, 2), (1, 2), (2, 1)}
θ7 = {(1, 1), (2, 2), (1, 2), (2, 1)}

**********

Example 29 Let R denote the set of real numbers and let

θ = {(x, y) ∈ R2 : xy > 0} α = {(x, y) ∈ R2 : x− y = 0}

Are either of these binary relations symmetric?

Solution. Since xy = yx in real number multiplication, IF xy > 0, THEN yx > 0 as well. Consequently, we
know that IF (x, y) ∈ θ, THEN (y, x) ∈ θ; and we may conclude that θ is symmetric. Since x−y = −(y−x)
in real number subtraction, we know that IF x− y = 0, THEN y − x = 0 as well. Consequently, we know
that IF (x, y) ∈ α, THEN (y, x) ∈ α; and we may conclude that α is symmetric.

**********

Example 30 Let Z denote the set of integers and let θ = {(m,n) ∈ Z× Z : n = m2}. Is this binary
relation reflexive or symmetric?

Solution. Since 2 6= 22, we know that (2, 2) /∈ θ. Consequently, we know that θ is not reflexive. Now, the
pair (2, 4) ∈ θ since 4 = 22; however, the pair (4, 2) /∈ θ, since 2 6= 42. Consequently, we know that θ is not
symmetric.

**********

Definition 31 Let X be a set, and let θ ⊆ X2. We say θ is transitive provided (a, b), (b, c) ∈ θ always
implies (a, c) ∈ θ.

13



Like symmetry, transitivity is a conditional property. In elementary arithmetic, transitivity appears in
the ordering of the real numbers as the trichotomy rule: For all real numbers a, b, c, IF a ≤ b and b ≤ c,
THEN a ≤ c. In general, transitivity, when it holds, provides a way of “linking together” elements in a
relation.

Example 32 What are the transitive binary relations on Y = {1, 2}?

Solution. The transitive relations will be

θ1 = {(1, 1)} θ2 = {(2, 2)} θ3 = {(1, 2)} θ4 = {(2, 1)}

θ5 = {(1, 1), (2, 2)} θ6 = {(2, 1), (1, 1)} θ7 = {(1, 2), (2, 2)} θ8 = {(2, 1), (2, 2)}

θ9 = {(1, 1), (2, 1), (1, 2), (2, 2)}

**********

Example 33 A group of ten families live along one side of a North-South road with each house exactly
one-fifth mile apart. Consider the relation M on this set of ten families defined by (p, q) ∈M if and only if
Family p lives at most one mile from Family q. Is M reflexive, symmetric, or transitive?

Solution.This relation is certainly reflexive, since every family livesat most one mile from itself. It is
certainly symmetric, because IF Family p lives at most one mile from Family q, THEN we know Family
q lives at most one mile from Family p. However, M is not transitive. To see why, number the families
consecutively starting with the northern-most one and just consider Family 1, Family 4, and Family 7. By
construction, Family 1 lives 3/5 mile from Family 4 and Family 4 lives 3/5 mile from Family 7. Thus, we
know that (1, 4) ∈ M and we know that (4, 7) ∈ M . However, Family 1 lives 6/5 miles from Family 7.
Consequently, (1, 7) /∈M ; and we must conclude that M is not transitive.

**********

Example 34 Let R denote the set of real numbers and let

θ = {(x, y) ∈ R2 : xy > 0} α = {(x, y) ∈ R2 : x− y = 0}

Are either of these binary relations transitive?

Solution. Let’s look at the relation θ first. Suppose that (a, b), (b, c) ∈ θ. Is it necessarily true that
(a, c) ∈ θ as well? By assuming that (a, b), (b, c) ∈ θ, we are assuming that ab > 0 and we are assuming that
bc > 0. If ab > 0, then clearly b 6= 0. Consequently, we know that either b > 0 or b < 0. Now, if b > 0, it
must be true that a > 0 and c > 0 as well since we know that ab > 0 and bc > 0. In this case, we therefore
know that ac > 0. On the other hand, if b < 0, it must be true that a < 0 and c < 0 as well since we know
that ab > 0 and bc > 0. In this case, we therefore know that ac > 0. Consequently, if (a, b), (b, c) ∈ θ, we
must conclude that (a, c) ∈ θ as well. Hence, we know that θ is transitive.

Now let’s consider the relation α. Suppose that (a, b), (b, c) ∈ α. Is it necessarily true that (a, c) ∈ α
as well? By assuming that (a, b), (b, c) ∈ α, we are assuming that a − b = 0 and we are assuming that
b− c = 0. Consequently, we know that

a− c = (a− b) + (b− c) = 0 + 0 = 0

We must therefore conclude that (a, c) ∈ α. Hence, we know that α is transitive.
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**********

1. EXERCISES FOR SECTION 3

2. Using Definition 1.1 as a guide, formally define X × Y × Z, where X, Y , and Z are sets.

3. If X, Y , and Z are sets, then is X × Y × Z the same set as (X × Y )× Z? Explain your answer.

4. Let Y be a set. How do you think ∅× Y should be defined? Is this case already covered in Definition
1.1? Explain.

5. Let Y be a nonempty set. What is the difference between ∅× Y and {∅} × Y ?

6. Let n be any positive integer and let X1, ...Xn be sets. We use the symbol
n∏
j=1

Xj to denote the product

of these sets (in the order given). Construct a formal definition for this symbol.

7. Let X be any set. Explain why every singleton binary relation θ = {(x, y)} on X is transitive. When
is such a relation symmetric? What must be true of X for θ to be reflexive?

8. Let X be any set and let R = {(a, b), (c, d)} be any two-element binary relation on X. Under what
various conditions will R be transitive?

9. Let E ⊆ Z× Z be defined by (m,n) ∈ E if and only if m = kn for some k ∈ Z. Prove that E is
reflexive and transitive, but not symmetric.

10. Let F ⊆ Z× Z be defined by (m,n) ∈ F if and only ifmn ≥ 0. Prove that E is reflexive and symmetric,
but not transitive.

11. A student once argued with his instructor that reflexivity is implied by symmetry and transitivity.
The argument went as follows: “Suppose that E is a binary relation on X which is symmetric and
transitive. If (x, y) ∈ E, then (y, x) ∈ E by symmetry; hence, (x, x) ∈ E by transitivity. Thus E is
reflexive.”What important fact has the student overlooked?

12. Find a binary relation on Z× Z which is symmetric and transitive but not reflexive.

13. Find a binary relation on Z× Z which is reflexive and transitive but not symmetric.

14. Let Q denote the set of all rational numbers. Define a binary relation R on Q by (x, y) ∈ R if and
only if x− y ∈ Z. Prove that R is reflexive, symmetric, and transitive.

15. Let Q = {(m,n) ∈ Z× Z : n 6= 0}. Define a binary relation C on Q by [(a, b), (c, d)] ∈ C if and only
if ad = bc. Prove that C is reflexive, symmetric, and transitive.

4 Equivalence Relations

When dealing with elements in a set, we have an intuitive idea of what equality should mean: If x and
y represent elements of a set X, then x and y are equal provided they represent the same element. This
intuitive idea may seem quite reasonable, but it is not always clear what the phrase “represent the same
element”should mean. For example, we can think of the set Q = {(m,n) ∈ Z× Z : n 6= 0} as representing
the set of all rational numbers, where an element (p, q) ∈ Q represents the rational number p/q. In this
set, the pairs (1, 2) and (2, 4) are definitely distinct; yet, we feel they should be “equal” since the rational
numbers 1/2 and 2/4 are considered “equal.”. This suggests that we should have some means at our disposal
for equating elements which is more flexible than simple identification.

We will define equality in a typically mathematical fashion. We will take our intuition about what
equality between elements in a set should mean, isolate certain properties this meaning implies, and then
define elements to be equal precisely when these properties are met.
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Thus, for the moment, suppose that we have a set X and a meaning for equality between elements of X.
Let us see what properties our intuition tells us this equality should possess. Speaking formally, under our
definition of equality, elements which are identified should be mathematically indistinguishable. Our defin-
ition of equality should provide us with rules specifying which elements are to become “indistinguishable”.
With this in mind, it is clear that, whatever our meaning for equality in X, every element of X should be
equal to itself. If x is equal to y, then it should also be true that y should be equal to x. That is, if we
cannot distinguish x from y, then we should not be able to distinguish y from x. It should also be clear
that, if x is equal to y and y is equal to z, then x should be equal to z. It is upon these properties that we
will base our definition of equality.

Definition 35 A binary relation θ on a set X is called an equivalence relation provided θ is reflexive,
symmetric, and transitive.

When we wish formally to define an equality between elements in a set X, we will do so by constructing
an equivalence relation θ on X. The ordered pairs which are contained in this relation will denote those
elements which we declare to be “equal”.
The simplest equivalence relation one can define on a set X is the so-called identity relation. The identity

relation, normally denoted by ∇X , or, more simply by “=”, is what we normally consider when we think of
equality of elements. This
relation is defined formally as follows:

∇X = {(a, a) : a ∈ X}

In the identity relation, every element is identified with itself and nothing else. The identity relation will be
our “defualt”definition of equality. Unless we have specified a different equivalence relation, whenever we
speak of equality of elements, we will assume equality is defined by this simple relation.

If we use the identity relation to define equality in Q, then (1, 2) = (1, 2), but (1, 2) 6= (2, 4) since (1, 2)
is not the same element as (2, 4).

Another simple equivalence relation which may be defined on any set X is the so-called entire relation.
Denoted by 4X , the entire relation declares everything in X to be equal to everything else. Formally, the
entire relation is defined as follows:

4X = {(a, b) : a, b ∈ X}
This extreme version of equality essentially collapses the set X to a single element. For example, if we use
the entire relation to define equality in Q, then (1, 2) = (1, 2), and (1, 2) = (2, 4). However, we would also
have (1, 2) = (3, 2), and (1, 2) = (5, 6). Indeed, we would have (1, 2) equal to every element in Q.
It is clear that neither the identity relation nor the entire relation provide a satisfactory definition of

equality for Q if we want this set to represent the rational numbers. In elementary algebra, we are taught
to consider two rational numbers a/b and c/d to be equivalent provided ad = bc. Notice that this idea is
captured by the equivalence relation C defined on Q in Exercise 1.15. It is this equivalence relation which
allows us to identify the set Q with the set Q of rational numbers.

Definition 36 Let X be any nonempty set. A partition of X is a collection F of subsets of X having the
property that every element of X is in exactly one member of F . The members of F are called equivalence
classes or cells.

Example 37 If we let Se = {2m : m ∈ Z} and So = {2m + 1 : m ∈ Z}, then the family F = {Se, So}
forms a partition of Z into two sets, namely the set of even and the set of odd integers. Every integer is a
member of exactly one set in F .

**********
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Theorem 38 Let X be a nonempty set. If F is any partition of X, then the set θ ⊆ X ×X defined by

(a, b) ∈ θ ⇐⇒ a, b ∈ S for some S ∈ F

is an equivalence relation on X.

Proof. We need to prove that the binary relation θ is reflexive, symmetric, and transitive. First, suppose
that a ∈ X. Since F is a partition of X, we know that a ∈ S for some set S ∈ F . Consequently, we know
that (a, a) ∈ θ; and we may conclude that θ is reflexive. Second, suppose that (a, b) ∈ θ. This means that
a, b ∈ S for some S ∈ F . Of course, if a, b ∈ S, then we know that b, a ∈ S as well. Hence, we know that
(b, a) ∈ θ; and we may conclude that θ is symmetric. Finally, suppose that (a, b), (b, c) ∈ θ. This means
that a, b ∈ S and b, c ∈ T for some S, T ∈ F . Now, since F is a partition of X, we know that b is an
element of exactly one member of F . We must therefore conclude that S = T . Consequently, we know
that a, c ∈ S; and this tells us that (a, c) ∈ θ. We may therefore conclude that θ is transitive.

QED

Example 39 Let X = {a, b, c, d, e, f, g, h} and let F = {S1, S2, S3} where

S1 = {a, e, f} S2 = {b, c, g} S3 = {d, h}

The family F forms a partition of X. What is the equivalence relation induced by F?

Solution. We know that the equivalence relation induced by F is defined by

(x, y) ∈ θ ⇐⇒ x, y ∈ S for some S ∈ F

Consequently, we construct θ simply by taking all pairs of elements which happen to lie in the same member
of F . Therefore,

θ = {(a, a), (e, e), (f, f), (a, e), (e, a), (a, f), (f, a), (e, f), (f, e), (b, b), (c, c), (g, g)
(b, c), (c, b), (b, g), (g, b), (c, g), (g, c), (d, d), (h, h), (d, h), (h, d)}

**********

Theorem 40 Let X be any nonempty set. If θ is any equivalence relation on X, then the collection of sets
F = {Sa : a ∈ X} defined by

Sa = {y ∈ X : (a, y) ∈ θ}

forms a partition of X.

Proof. We need to show that every member of X appears in exactly one member of F . Since we know
(a, a) ∈ θ for each a ∈ X, it is clear that a ∈ Sa for each a ∈ X. Hence, we know that every element of X
appears in at least one member of F . Suppose now that a ∈ Sa and a ∈ Sb. We will prove that Sa = Sb.
To this end, suppose that y ∈ Sa. This means that (a, y) ∈ θ. Since a ∈ Sb, we also know that (b, a) ∈ θ as
well. The transitivity of θ therefore tells us that (b, y) ∈ θ, and this implies that y ∈ Sb. We may therefore
conclude that Sa ⊆ Sb. On the other hand, suppose that z ∈ Sb. This means that (b, z) ∈ θ. We know
that (b, a) ∈ θ; hence, the symmetry of θ tells us that (a, b) ∈ θ. Consequently, the transitivity of θ allows
us to conclude that (a, z) ∈ θ. Therefore, we know that z ∈ Sa; and we may conclude that Sb ⊆ Sa. Hence,
Sb = Sa, as desired.

QED
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Example 41 Let n ∈ Z+ be fixed and let MODn ⊆ Z× Z be defined by (a, b) ∈ MODn if and only if a ≡ bMOD(n).
In light of Lemma 12, we know that MODn is an equivalence relation. What is the partition induced by MODn?

Solution. First, we know there exists a unique integer ra such that 0 ≤ ra < n and a ≡ raMOD(n). From
the previous theorem and Theorem 13 that the partition F = {Sa : a ∈ X} induced by MODn is comprised of
sets having the form

Sa = {y ∈ Z : (a, y) ∈ MODn}
= {y ∈ Z : a ≡ yMOD(n)}
= {y ∈ Z : a and y have the same remainder when divided by n}
= {y ∈ Z : y ≡ raMOD(n) }
= {un+ ra : u ∈ Z}

Now, there are only n distinct integers between 0 and n− 1; hence, the last equality above tells us that the
partition F actually consists of n distinct sets, namely the sets

S0 = {un : u ∈ Z} S1 = {un+1 : u ∈ Z} S2 = {un+2 : u ∈ Z} ... Sn−1 = {un+n−1 : u ∈ Z}

**********

The partition induced on Z by the equivalence relation MODn is often denoted by Zn. In other
words, Zn = {S0, ..., Sn−1} where the sets Sj are described in the previous example. In number theory, this
partition of Z is traditionally called the family of residue classes modulo n. For example, the family of
residue classes modulo 4 would be Z4 = {S0, S1, S2, S3}, where

S0 = {...,−12,−8,−4, 0, 4, 8, 12, ...} S1 = {...,−11,−7,−3, 1, 5, 9, 13, ...}
S2 = {...,−10,−6,−2, 2, 6, 10, 14, ...} S3 = {...,−9,−5,−1, 3, 7, 11, 15, ...}

When working with the partition Zn = {S0, ..., Sn−1}, it is common to let [a]n = Sj , where a is any
member of Sj . The selected number a is called a representative of the equivalence class. It does not matter
which member of the set Sj you select to be the representative, since all members of the equivalence class
are considered “equal”to one another. For example, in Z4, we could let

S2 = [−10]4 or S2 = [2]4 or S2 = [14]4

While any member of the equivalence class may be used as its representative, in practice we usually select
its smallest positive member. In other words, the default is to let Sj = [j]n. Using this convention, we
would write

Z4 = {[0]4, [1]4, [2]4, [3]4}

EXERCISES FOR SECTION 4

1. What are the elements of the residue class [9]12?

2. What are the elements of the residue class [15]30?

3. What is the smallest positive member of the residue class [83]9?

4. What are the elements of the residue class [100]6?

5. List the elements in each of the five residue classes modulo 5.

6. List the elements in each of the eight residue classes modulo 8.

7. Let X = {a, b, c, d, e, f, g} and let S1 = {a, d, e}, S2 = {f, g, c}, and S3 = {b}. The family F =
{S1, S2, S3} forms a partition of X. What is the equivalence relation θ induced by F?
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8. Let X = {a, b, c, d, e, f, g} and let

θ = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (g, a), (a, g), (a, b), (b, a), (g, b), (b, g)}

The set θ is an equivalence relation on X. What is the partition induced by θ?

9. Let X = {a, b, c, d, e, f, g}. What is the partition induced on X by the identity relation ∇X? What
is the partition induced by the entire relation 4X?

10. Let θ ⊆ Z× Z be defined by (m,n) ∈ θ if and only if |m| = |n|.

(a) Show that θ is an equivalence relation.

(b) Construct the partition induced by θ.

11. Let θ ⊆ Q×Q be defined by (x, y) ∈ θ if and only if x− y ∈ Z.

(a) Show that θ is an equivalence relation.

(b) Construct the partition induced by θ. Hint: You should use Exercise 2.15.

12. Let X be any nonempty set and let Su[X] denote the powerset of X (the set of all subsets of X). Let
D ∈Su[X] be fixed and let θ ⊆ Su[X]×Su[X] be defined by (A,B) ∈ θ if and onlly if A ∩D = B ∩D.

(a) Show that θ is an equivalence relation on Su[X].

(b) What is the partition induced on Su[X] when D = ∅?
(c) Let X = {a, b, c, d} and let D = {b, c}. Construct the relation θ and the partition it induces.

13. Let R2 = R× R denote the cartesian plane. For each real number r, let Sr = {(a, b) ∈ R2 : a2 + b2 =
r2}.

(a) Show that F = {Sr : r ∈ R} forms a partition of R2.
(b) Construct the equivalence relation induced by F .

5 Functions

In the last two sections, we introduced binary relations on sets and used them to give a formal definition
of equality which is more flexible than simply identifying objects with themselves. We will now use binary
relations to give a formal definition for the notion of a function – one which is flexible enough to be used
outside the familiar contexts of algebra or calculus.

Let X1, X2, ..., Xn be a collection of sets. In Exercise 3.6, you defined the product of this collection is
defined to be the set

n∏
j=1

Xj = {(a1, ..., an)} : aj ∈ Xj}

The elements of the product are called ordered n-tuples or vectors; individual elements of an n-tuple are
called coordinates. We often use the symbol X1 ×X2 × ...×Xn to denote the product, especially when we
are dealing with a small number of sets. When we refer to the product of n copies of a single set X, we often
use the symbol Xn. It is common to let a = (a1, ..., an) when we do not need to specify coordinates.

Definition 42 Given two sets X and Y , an n-ary function from X to Y is a binary relation f ⊆ Xn×Y
satisfying the following conditions:

1. If (a1, ..., an) ∈ Xn, there there exist b ∈ Y such that ([a1, ..., an], b) ∈ f .

19



2. If ([a1, ..., an], b) ∈ f and ([a1, ..., an], c) ∈ f , then b = c.

Stated more plainly, we say that an n-ary function f on Xn×Y is a rule which assigns ever vector in Xn

to exactly one member of Y . In keeping with traditional algebra notation, we usually write f : Xn −→ Y
to denote an n-ary function from X to Y , and we often write

f(a) = b or f(a1, ..., an) = b

in place of the more cumbersome relation notation ([a1, ..., an], b) ∈ f . In keeping with relation terminology,
we call the set Xn the domain of f . The set Rf = {b ∈ Y : f(a) = b for some a ∈ Xn} is called the
range of f or the image of Xn under f . The set Y is called the codomain of f . The codomain of an n-ary
function is not uniquely determined; indeed, the codomain can be any set which contains the range of the
n-ary function.

You encountered n-ary functions in Calculus III, where you called them multi-variable functions. Here
are a few concrete examples of n-ary functions.

• The function f : R∗ −→ R∗ defined by f(x) = 1/x.

• The function g : R3 −→ R defined by g(x, y, z) = sin(xy) cos(yz)

• The function h : R3 × R3 −→ R defined by h[(a, b, c), (u, v, w)] = au+ bv + cw

The function f is specifically called a unary function, because it acts on 1-tuples. Any single-variable
function can be thought of as a unary function on its implied domain. The function g is called a ternary
function, because it acts on triples. The function h (which happens to be the three-dimensional dot-product
from linear algebra) is considered a binary function, because it acts on ordered pairs – even though the
coordinates of the pairs are themselves triples.

Definition 43 Let f : Xn −→ Y be an n-ary function from X to Y . For all y ∈ Y , the set {a ∈ Xn :
f(a) = y} is called the preimage of y under the function f . We will use Pref (y) to denote this set.

• We say that f is onto (or a surjection) provided Pref (y) contains at least one element for all y ∈ Y .

• We say that f is one-to-one (or an injection) providedPref (y) contains at most one element for all
y ∈ Y .

• We say that f is a bijection provided it is both an injection and a surjection.

Example 44 Let f(x) = tan(x). What is Pref (1) and Pref (3)?

Solution. We begin with Pref (1). We want to find all values of x such that tan(x) = 1. Now, we know
from basic trigonometry that

1 = tan(x) =⇒ 1 =
sin(x)

cos(x)
=⇒ cos(x) = sin(x)

Basic trigonometry also tells us that this occurs when x = π/4 . Furthermore, since the tangent function is
periodic with period π, we know that

Pref (1) =
{π
4
+ nπ : n ∈ Z

}
We now turn attention to Pref (3). There are no “special”trigonometric relationships that tell us exactly
which values of x yield tan(x) = 3, but a graphing calculator shows that tan(1.249 rad) ≈ 3. Hence, we
know that

Pref (3) ≈ {1.249 + nπ : n ∈ Z}
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**********

Example 45 Show that the function f : R∗ −→ R∗ defined by f(x) = 1/x is a bijection.

Solution. We first show that f is onto. To this end, let y be any nonzero real number. We need to show
that Pref (y) contains at least one member. We know that x = 1/y is a nonzero real number, hence

f(x) =
1

x
=

1

1/y
= y

Therefore, we know that x ∈ Pref (y); and we may conclude that f is onto. We now show that f is one-to-
one. We need to show that Pref (y) contains at most one member. To accomplish this, suppose that a, b ∈
Pref (y). It will suffi ce to prove that a = b. Now, assuming that a, b ∈ Pref (y) means f(a) = y = f(b).
Therefore, we know

f(a) = f(b) =⇒ 1

a
=
1

b
=⇒ a = b

Therefore, we may conclude that f is one-to-one.

**********

Example 46 Show by counterexample that the function g : R3 −→ R defined by g(x, y, z) = sin(xy) cos(yz)
is neither onto nor one-to-one.

Solution. To prove that g is not onto, we must identify some u ∈ R such that Preg(u) = ∅. Recall
from basic trigonometry that, by definition, | sin(θ)| ≤ 1 and | cos(θ)| ≤ 1. Consequently, no matter what
we choose x, y, and z to be, it is not possible to have sin(xy) cos(yz) > 1. Therefore, if we let u = 2, for
example, we must conclude that Preg(2) = ∅. To prove that g is not one-to-one, we must identify some
u ∈ R such that Preg(u) contains more than one element. Since the sine and cosine functions are periodic,
we have many choices. Consider, for example, u = 1. There are many values of x, y, and z for which
sin(xy) cos(yz) = 1. Indeed,

g
(π
2
, 1, 0

)
= 1 and g

(π
2
, 1, 2π

)
= 1

Hence, we know that (π/2, 1, 0), (π/2, 1, 2π) ∈ Preg(u), and we may conclude that g is not one-to-one.

**********

Example 47 Show that h : R3 × R3 −→ R defined by h[(a, b, c), (u, v, w)] = au+ bv + cw is onto but is not
one-to-one.

Solution. To see that h is onto, let u ∈ R. We need to show that Preh(u) 6= ∅. This means we need to
find a pair [(a, b, c), (x, y, z)] ∈ R3 × R3 such that h[(a, b, c), (x, y, z)] = u. One way to do this would be to
consider (u, 0, 0) and (1, 1, 1). Observe that

h[(u, 0, 0), (1, 1, 1)] = (u)(1) + (0)(1) + (0)(1) = u

We therefore know that [(u, 0, 0), (1, 1, 1)] ∈ Preh(u); and we may conclude that h is onto. To prove that h
is not one-to-one, we need to identify a specific value of u for which Preh(u) contains more than one element.
Consider, for example, u = 2. We already know that [(2, 0, 0), (1, 1, 1)] ∈ Preh(2). It is easy to see that
[(1, 0, 0), (2, 1, 1)] ∈ Preh(2) as well. Hence, we may conclude that h is not one-to-one.
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**********

Let f : Xn −→ Y and g : Xn −→ Y be n-ary functions. We say that f and g are equal provided
f(x) = g(x) for all x ∈ Xn. We refer to this as the pointwise definition of function equality. To show
that two functions are equal, you must show they have the same domain, and show they produce the same
output for every input in their domain. For example, consider the real-valued functions

f(x) =
x2 − 1
x+ 1

g(x) = x− 1

We can use basic algebra to “simplify”the formula for f . Indeed, we know

x2 − 1
x+ 1

=
(x− 1)(x+ 1)

x+ 1
= x− 1 (x 6= −1)

Does this mean that f = g? The answer depends on what we specify the domains of these functions to be.
If we assume the largest possible domain (the so-called implied domain) for each function, then they are not
equal because they do not have the same domain. The function g is defined for all real numbers, while the
function f is defined for all real numbers except x = −1. However, if we specify that the domain of each is
the set R+, then the functions would be equal, since they produce the same output for every member of this
set. There are many other domains where the functions are equal. (They would, for example, be equal on
the domain W.) This is one of the reasons why we are always careful to specify the domain of a function
when it is first defined.

We will focus on unary functions for the remainder of this section.

Definition 48 Let f : X −→ Y and g : Y −→ Z be unary functions. We define the composition of g
after f to be the function g ◦ f : X −→ Z defined pointwise by (g ◦ f)[x] = g(f(x)).

Like most mathematical constructions, function composition is interpreted from left to right. If
parentheses are involved in the composition then the parenthetic expression is considered as a single function;
and what appears immediately to the right of any function is considered input into that function. For
example, consider the functions f : (1,+∞) −→ R+, g : R+ −→ R, and h : R −→ Z+ defined by

f(x) =
1

x− 1 g(x) = x2 − 10
√
x− 6 h(x) = dxe

(The function h is called the least integer function – dxe is defined to be the smallest integer greater than
or equal to x.) We would interpret (h◦g)◦f pointwise with h◦g initially viewed as one function with input
from f . In other words, for all x ∈ (1,+∞), we have

((h ◦ g) ◦ f) [x] = (h ◦ g) [f(x)] = h(g(f(x))) =

⌈
1

(x− 1)2 − 10
√

1

x− 1 − 6
⌉

Notice that we have (h ◦ g) ◦ f : (1,+∞) −→ Z+. How would we interpret the function h ◦ (g ◦ f)? In
this case, we initially consider g ◦ f as a single function which first serves as input into h. We understand
g ◦ f : (1,+∞) −→ R, so for all x ∈ (1,+∞), we have

(h ◦ (g ◦ f)) [x] = h ((g ◦ f) [x]) = h(g(f(x))) =

⌈
1

(x− 1)2 − 10
√

1

x− 1 − 6
⌉

Notice that, according to the pointwise definition of function equality, we have (h ◦ g) ◦ f = h ◦ (g ◦ f). It
turns out that this is always the case as long as the two compositions are defined.
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Theorem 49 Let f : X −→ Y , g : Y −→ Z, and h : Z −→ W be unary functions. It is always the case
that (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof. First, note that (h ◦ g) ◦ f : X −→ W and h ◦ (g ◦ f) : X −→ W , so both have the same domain.
To show these functions are equal, we must show that they produce the same output for each element of X.
Observe that, for all x ∈ X we have

((h ◦ g) ◦ f) [x] = (h ◦ g) [f(x)] = h(g(f(x))) = h((g ◦ f)[x]) = (h ◦ (g ◦ f)) [x]

QED

Let X be any nonempty set. The unary function εX : X −→ X defined by ε(x) = x is called the
identity function on the set X. It is so named because it “identifies”every element of X. We often omit
the subscript and simply write ε to denote this function when no confusion will result. It should be clear
that the identity function is always a bijection.

Definition 50 Let f : U −→ V be a unary function.

1. We say that f has a left inverse provided there exists a function g : V −→ U such that g ◦ f = εU .

2. We say that f has a right inverse provided there exists a function h : V −→ U such that f ◦ h = εV .

3. We say that f has a full inverse provided there exists a function j : V −→ U such that j ◦ f = εU
and f ◦ j = εV .

Let U and V be sets and suppose that f : U −→ V is a unary function. The definition above tells us f
has a left inverse provided there exists a function h : V −→ U such that h(f(u)) = u for all u ∈ U . Likewise,
the function f has a right inverse provided there exists a function j : V −→ U such that f(j(v)) = v for all
v ∈ V . Let’s look at some concrete examples of left and right inverses for functions.

Example 51 Let f : Y −→ X be the function defined for the sets X and Y shown below. Does f have a
left inverse? Does f have a right inverse?

X = {1, 2, 3, 4} Y = {a, b, c, d, e}
f(a) = 1 f(b) = 2 f(c) = 4 f(d) = 3 f(e) = 3

Since there is no formula-based rule defining f , we will answer these questions by trying to construct
a left and a right inverse directly for f . We will start with a left inverse. We want a function h : X −→ Y
such that h(f(y)) = y for all y ∈ Y . The strategy is simple – for each x ∈ X, we look to see what element
of Y the function f assigns to x. We then let h(x) be that element. Observe

• Since f(a) = 1, we will let h(1) = a. Then h(f(a)) = h(1) = a.

• Since f(b) = 2, we will let h(2) = a. Then h(f(b)) = h(2) = b.

• Since f(c) = 4, we will let h(4) = c. Then h(f(c)) = h(4) = c.

• Since f(d) = 3, we wll let h(3) = d. Then h(f(d)) = h(3) = d.

Unfortunately, we now run into a problem. Since f(e) = 3, we must also have h(3) = e. This is not
possible, since we want h to be a function. We must therefore conclude that this particular function f does
not have a left inverse.

We will now check to see if f has a right inverse. We want a function j : X −→ Y such that
f(j(x)) = x for all x ∈ X. The strategy is simple – for each x ∈ X, we look to see what element of Y the
function f assigns to x. We then let j(x) be that element. Observe
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• Since f(a) = 1, we will let j(1) = a. Then f(j(1)) = f(a) = 1.

• Since f(b) = 2, we will let j(2) = b. Then f(j(2)) = f(b) = 2.

• Since f(c) = 4, we will let j(4) = c. Then f(j(4)) = f(c) = 4.

• Since f(d) = 3, we wll let j(3) = d. Then f(j(3)) = f(d) = 3.

So far, the process looks just like the one we used in our failed attempt to construct a left inverse h. Do we
run into the same problem with j? Do we also have to have j(3) = e? The answer turns out to be “NO.”
Since we are not trying to return to elements in Y , we don’t have to care about e this time. The function

j(1) = a j(2) = b j(3) = d j(4) = c

meets the criterion for a right inverse and therefores serves as one for the function f . As a matter of
fact, since both e and d are assigned to the element 3 by the function f , we can really construct two right
inverses for f . The function

k(1) = a k(2) = b k(3) = e k(4) = c

serves as a right inverse for f as well.

**********

When working with unary functions between finite sets, it is common to use tabular notation to write
down the function, especially when the function has no easily determined rule. Tabular notation represents
the function as a kind of matrix, with the top row denoting the domain, and the bottom row denoting the
range. For example, the function f from the previous example could be written

.f :

(
a b c d e
1 2 4 3 3

)
1. The columns represent the assignment. In this case, we would interpret the third column as meaning
f(c) = 4.

Example 52 Let A = {1, 2, 3, 4} and let B = {u, v, w, x, y, z} and consider the function g : A −→ B
defined by

g :

(
1 2 3 4
v z y u

)
Does this function have a left or a right inverse?

Solution. Let’s begin by trying to construct a left inverse for g. The process is exactly the same as in the
previous example. Observe

• Since g(1) = v, we will let h(v) = 1. Then h(g(1)) = h(v) = 1.

• Since g(2) = z, we will let h(z) = 2. Then h(g(2)) = h(z) = 2.

• Since g(3) = y, we will let h(y) = 3. Then h(g(3)) = h(y) = 3.

• Since g(4) = w, we wll let h(w) = 4. Then h(g(4)) = h(w) = 4.
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The function g does not assign anything to the element x, so we cannot use g to define h(x). Instead, we
will just pick something from A and assign it to x. For example, we could let h(x) = 1. We now have a
function h : B −→ A with the property that h(f(t)) = t for all t ∈ A. (Since g(t) 6= x for any t ∈ A, the
value of h(x) is not important.) Consequently, h is a left inverse for g. Furthermore, we actually have four
different functions we could use, since we could let h(x) be any element from A.

Now let’s try to construct a right inverse for this function g. Observe

• Since g(1) = v, we will let j(v) = 1. Then g(j(v)) = g(1) = v.

• Since g(2) = z, we will let j(z) = 2. Then g(j(z)) = g(2) = z.

• Since g(3) = y, we will let j(y) = 3. Then g(j(y)) = g(3) = y.

• Since g(4) = w, we wll let j(w) = 4. Then g(j(w)) = g(4) = w.

We now run into another problem – since g does not assign any member of A to the element x, we don’t
have any value for j(x). Perhaps we could just choose an element at random from A like we did in
constructing h. Suppose we let j(x) = 2, for example. We would then have a function j : B −→ A. Does
the function j satisfy the criterion for right inverse? Well, since g(2) = z, observe that

g(j(x)) = f(2) = z

Consequently, this function does not serve as a right inverse for g. There is nothing especially bad about
the element 2; we would have the same problem if we let j(x) be any member of A. We must therefore
conclude that g does not have a right inverse.

**********

What is the difference between the example functions f and g in the last two examples? The function
f is onto but is not one-to-one, while the function g is one-to-one but is not onto. It turns out that this
distinction makes all the difference.

Let X and Y be sets and let f : X −→ Y be a function. The function f has a left inverse if and only
if it is one-to-one; the function f has a right inverse if and only if it is onto. Furthermore, if f is onto but
is not one-to-one, then f will have multiple right inverses. Likewise, if f is one-to-one but not onto, then
f will have multiple left inverses. We will provide a proof of these claims shortly; for the moment, let’s
consider more examples.

Example 53 The function f : Z −→W defined by f(n) =
√
n2 is onto but is not one-to-one. Construct

two right inverses for the function f .

Solution. The key to this problem is to note that, except for 0, the preimage of any whole number contains
two elements. For example, Pref (4) = {−4, 4}. With this in mind, it is easy to construct two different
right inverses for f . Define j1 :W −→ Z and j2 :W −→ Z by

j1(w) = w j2(w) = −w

Both of these functions serve as right inverses for f . Indeed, observe that

f(j1(w)) =

√
(j1(w))

2
=
√
w2 = w (since w ≥ 0)

f(j2(w)) =

√
(j2(w))

2
=

√
(−w)2 = w (since w ≥ 0)

It is worth noting that neither serves as a left inverse for f . Indeed, observe that

j1(f(−3)) = j1

(√
(−3)2

)
= j1(3) = 3
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j2(f(3)) = j2

(√
(3)

2

)
= j2(3) = −3

Consequently, we see that j1(f(−3)) 6= −3 and j2(f(3)) 6= 3.

**********

It is also worth noting that the function f in the previous example actually has infinitely many right
inverses. For example, the function

j3(w) =

{
w if w 6= 4
−4 if w = 4

also serves as a right inverse for f .

Example 54 Consider the function f : R −→ R+∪{0} defined by f(x) = x2. Show that g : R+∪{0} −→ R
and h : R+ ∪ {0} −→ R defined by g(y) = √y and h(y) = −√y are both right inverses for f but are not left
inverses for f .

Solution. To see that both are right inverses for f , let y ∈ R+ ∪ {0} be any nonnegative real number and
observe that

(f ◦ g)[y] = f(g(y)) = [
√
y]
2
= y = εY (y) (f ◦ h)[y] = f(h(y)) = [−√y]2 = y = εY (y)

Consequently, we see that f ◦ g = εY and f ◦ h = εY ; we may therefore conclude that both g and h serve as
right inverses for f . To see that g does not serve as a left inverse, we need a counterexample to show that
(g ◦ f)[x] 6= x for some x ∈ R. Let x = −2 and observe that

(g ◦ f)[−2] =
√
(−2)2 =

√
4 = 2

This computation shows that (g ◦ f)[−2] 6= −2; hence, we may conclude that g ◦ f 6= εX . We can use x = 2
to show that h ◦ f 6= εX .

**********

We had to be careful in choosing the codomain of the function f in the previous example. If we had
considered f : R −→ R instead (which we could easily do since R+ ∪ {0} ⊆ R), then f would not have a
right inverse. The problem, of course, arises from the fact that squaring any real number always produces a
nonnegative real number. Consequently, it is simply not possible to define a function g : R −→ R such that
(f ◦ g)[y] = (g(y))2 = y when y < 0. We must specify the codomain to be the range of our function before
having any hope of constructing a right inverse.

On the other hand, left inverses are not as picky. Consider the function g : R+ ∪ {0} −→ R defined
by g(x) =

√
x. Notice that the specified codomian is not the range (since the range is also R+ ∪ {0}). The

functions f : R −→ R+ ∪ {0} and h : R −→ R+ ∪ {0} defined by

f(y) = y2 h(y) =

{
y2 if y ≥ 0
0 if y < 0

are both left inverses for the function g. Indeed, observe that, for all x ∈ R+ ∪ {0} we have

(f ◦ g)[x] = f(g(x)) =
(√
x
)2
= x = εX(x) (h ◦ g)[x] = h(g(x)) =

(√
x
)2
= x = εX(x)

Notice that the branch of h specified for y < 0 does not figure into the computation (because g produces
only nonnegative output). This means we could use any rule for y < 0 that produces nonnegative output.
(We need nonnegative output because the range of h must be the domain of g.) Neither f nor h serves as
a right inverse for g, as you can check for yourself. (Just consider y = −2.)
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Theorem 55 Let f : X −→ Y be a unary function where X is nonempty.

1. The function f has a right inverse if and only if f is onto.

2. The function f has a left inverse if and only if f is one-to-one.

3. The function f has a full inverse if and only if f is a bijection. Furthermore, this full inverse is
unique.

Proof. To establish Claim (1), first suppose that f has a right inverse g. To prove that f is onto, we
must show that Pref (y) 6= ∅ for all y ∈ Y . Since g : Y −→ X, we know that g(y) exists for all y ∈ Y ;
and, since g is a right inverse for f , we know that f(g(y)) = y. Hence, we know that g(y) ∈ Pref (y); and
we may conclude that f is onto. Conversely, suppose that f is onto. This means that Pref (y) 6= ∅ for all
y ∈ Y . Construct a function g : Y −→ X by selecting exactly one x ∈ Pref (y) for each y ∈ Y and letting
g(y) = x. It follows that f(g(y)) = f(x) = y for all y ∈ Y ; consequently, we may conclude that f ◦ g = εY .
Therefore, the function g serves as a right inverse for f .

To establish Claim (2), first suppose that f has a left inverse h. To prove that f is one-to-one, we
must show that Pref (y) is either empty or is a singleton. Let y ∈ Y and suppose that u, v ∈ Pref (y). It
will suffi ce to prove that u = v. By assumption, we know that f(u) = y = f(v). Consequently, we also
know that

u = (h ◦ f)[u] = h(f(u)) = h(f(v)) = (h ◦ f)[v] = v

This computation shows that, if Pref (y) is nonempty, then it can contain only one element. We may
therefore conclude that f is one-to-one. Conversely, suppose that f is one-to-one. Let U = {y ∈ Y :
Pref (y) 6= ∅} and let V = Y − U . Since f is assumed to be one-to-ne, we know that for each y ∈ U , the
set Pref (y) is a singleton. In particular, we know Pref (y) = {xy} for some xy ∈ X. Construct a function
h : Y −→ X in the following way. Let a ∈ X be fixed and let

h(y) =

{
xy if y ∈ U
a if y ∈ V

The function h will serve as a left inverse for f . To see why, suppose x ∈ X and suppose that f(x) = b.
Observe that

(h ◦ f)[x] = h(f(x)) = h(b) = xb

Of course, we know that x, xb ∈ Pref (b); and, since f is one-to-one, this tells us that x = xb. Consequently,
(h ◦ f)[x] = x for all x ∈ X; and we may conclude that h is a left inverse for f.

It remains to prove Claim (3). Suppose first that f has a full inverse j. We must prove that f is a
bijection. We know that f ◦ j = εY and j ◦ f = εX . Consequently, g serves as a right inverse for f which
implies f is onto by Claim (1). Also, j serves as a left inverse for f which implies f is one-to-one by Claim
(2). Hence, f is a bijection. Conversely, suppose that f is a bijection. We must show that f has a full
inverse. In other words, we must find a function j : Y −→ X such that j ◦ f = εX and f ◦ j = εY . The
assumption that f is a bijection means that f is onto; hence we know that f has a right inverse g : Y −→ X
by Claim (1). It also means that f is one-to-one; hence we know that f has a left inverse h : Y −→ X by
Claim (2). It will suffi ce to prove that g = h. To this end, let y ∈ Y and observe that by Theorem 44, we
have

h(y) = h(εY [y]) = h((f ◦ g)[y]) = (h ◦ (f ◦ g)) [y] = ((h ◦ f) ◦ g) [y] = (εX ◦ g) [y] = εX(g(y)) = g(y)

We may now conclude that g = h. If we let j = g = h, then it follows that j serves as both a right and a
left inverse for f and is therefore a full inverse for f .

To complete the proof of Claim (3), we must prove that the full inverse of f is unique. To this end,
suppose that j and k are full inverses for f . We must show that j = k. However, we have actually already
proven this. Since j is a full inverse for f , we know that j is a left inverse for f ; and, since k is a full inverse
for f , we know that k is a right inverse for f . Consequently, j = k by the previous argument.
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QED

The previous result tells us that every function can have at most one full inverse (and will have one
precisely when it is a bijection). This is certainly not the case for functions which have only left or only
right inverses. When it exists, we usually refer to the full inverse of a function f as the inverse of f . It is
traditional to denote the inverse of a function f by the symbol f−1.

EXERCISES FOR SECTION 5

1. Let X = {1, 2, 3, 4} and let Y = {a, b, c, d}. Determine which, if any, of the following relations is a
unary function. For those which are functions, which ones are onto? Which ones are one-to-one?
Which ones are bijections?

(a) R = {(1, a), (1, b), (2, c), (3, d), (4, d)}
(b) S = {(1, b), (2, b), (3, b), (4, b)}
(c) T = {(1, c), (2, d), (3, b), (4, a)}

2. Let X = {1, 2, 3} and let Y = {a, b, c, d}. Determine which, if any, of the following relations is a binary
function. For those which are functions, which ones are onto? Which ones are one-to-one? Which
ones are bijections?

(a) R = {([1, 1], a), ([2, 2], b), ([3, 3], c)}
(b) S = {([1, 1], b), ([1, 2], c), ([1, 3], a), ([2, 1], d), ([2, 2], a), ([2, 3], c), ([3, 1], b), ([3, 2], d), ([3, 3], d)}
(c) S = {([1, 1], a), ([1, 2], d), ([1, 2], a), ([2, 1], c), ([2, 2], a), ([2, 3], b), ([3, 1], b), ([3, 2], a), ([3, 3], d)}

3. Consider the unary function f : R −→ R defined by f(x) = x4. What is Pref (9)?

4. Consider the binary function f : R2−→ R defined by f(x, y) = x2 cos(y). What is Pref (9)? What is
Pref (−2)?

5. Consider the binary function f : R2−→ R+ defined by f(x, y) = 1 + x2 + y2. Is this function onto?
Is this function one-to-one?

6. Consider the binary function f : Z2−→ Z defined by f(x, y) = 3x + 2y. Show this function is not
one-to-one but is onto. (Use the fact that GCF(3, 2) = 1.)

7. Consider the unary function f : Z+ −→ Z defined by

f(n) =


n

2
if n is even

1− n
2

if n is odd

Show that this function is a bijection.

8. Consider the unary function f : Z+ −→ Z+ defined by f(n) = 2n. Show that the following functions
are left inverses for f .

g(k) =

{
k

2
if k is even

k if k is odd
h(k) =

{
k

2
if k is even

3k if k is odd

9. Construct two right inverses for the function f : R −→ R+ ∪ {0} defined by f(x) = |x|.

10. Let f : X −→ Y be any function. Prove that εY ◦ f = f and f ◦ εX = f .
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11. Let f : Xn −→ Y be any function. Show that the family F = {Pref (y)} : y ∈ Y } forms a partition
of Xn. What is the equivalence relation induced by F?

12. If f : X −→ Y and g : Y −→ Z are both unary functions that are onto, prove that g ◦ f : X −→ Z is
onto.

13. If f : X −→ Y and g : Y −→ Z are both unary functions that are one-to-one, prove that g◦f : X −→ Z
is one-to-one.

14. Construct two left inverses for the function f : X −→ Y given by the table below. In this case, assume
Y = {1, 2, 3, 4, 5, 6}. Write your answers using tabular notation.

f :

(
a b c d
1 3 2 5

)
15. Construct two right inverses for the function f : X −→ Y given by the table below. In this case,

assume Y = {1, 2, 3, 4, 5, 6}. Write your answers using tabular notation.

f :

(
a b c d e f g h
6 2 3 2 4 4 5 1

)
16. Construct the inverse for the bijection f : X −→ Y given by the table below. Write your answer using

tabular notation. Why is it unecessary to specify Y this time?

f :

(
a b c d
u x w t

)

6 Operations

Most of the arithmetic operations we are familiar with in algebra can be thought of as binary functions.
For example, integer addition and integer multiplication “work” on pairs of integers to produce another
integer. We conclude this chapter by taking a closer look at what mathematicians mean when they talk
about “operations.”

Definition 56 An n-ary function f : Xn −→ X is often called an n-ary operation on X. An operation
must take all possible n-tuples from X and assign them a unique element from X.

Consider the three functions below that we first encountered in Section 5.

• The function f : R∗ −→ R∗ defined by f(x) = 1/x.

• The function g : R3 −→ R defined by g(x, y, z) = sin(xy) cos(yz)

• The function h : R3 × R3 −→ R defined by h[(a, b, c), (u, v, w)] = au+ bv + cw

We would consider the function f : R∗ −→ R∗ defined by f(x) = 1/x to be a unary operation on the
set R∗ of nonzero real numbers. (This rule would not be an operation on R since f(0) is undefined.) The
function g defined above is a ternary operation on R. The function h defined above is not a binary operation
on R3 because, even though h is defined for all pairs from R3, it does not assign these pairs to another member
of R3. (Instead, h assigns every pair from R3 to a real number.)
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It is very common to use some suggestive symbol like + or ∗ to denote a given binary operation and
to write a ∗ b in place of the more formal f(a, b). For example, the function f : R× R −→ R defined by

f(a, b) = a+
ab

2
+ b

defines a binary operation on the real numbers. (All that is required is simply for f(a, b) to be a unique
real number for every pair of real numbers (a, b).) Consequently, we could use some suggestive symbol like

a� b = a+
ab

2
+ b

in place of the more formal and cumbersome function notation. (In this case, since the formula explicitly
uses the plus-symbol for real number addition, we would not want to use + to avoid confusion.) There is
no corresponding convention for higher order operations.

Example 57 Let n be a fixed positive integer and let Zn = {[0]n, ..., [n−1]n} denote the family of residue
classes modulo n that we introduced in the previous section. Define a binary relation θn ⊆ [Zn]2 × Zn by
the formula

([[i]n, [j]n] , [k]n) ∈ θn ⇐⇒ k ≡ (i+ j)MOD(n)

Prove that this relation is a binary operation on Zn.

Solution. It is clear that θn takes every ordered pair from Zn and relates it to at least one element of Zn.
The real question here is “how many members of Zn are related to each pair?” We want to show that θn is
a function, which means we must prove that each ordered pair from Zn is related to exactly one element of
Zn. Let’s look at a concrete example to see where the potential problem lies. Consider the partition

Z6 = {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6}

and in particular consider the residue classes [3]6 and [5]6. Since 2 ≡ (3 + 5)MOD(6), we know that
([[3]6 , [5]6] , [2]6) ∈ θ6. Is there any other residue class related to the pair [[3]6 , [5]6]? One potential issue
arises from the fact that there are many integers equivalent to 3+5modulo 6. For example, 8 ≡ (3+5)MOD(6).
The relation θ6 will not be a function if 2 and 8 lay in different residue classes. Of course, this is not the
case, since both leave the same remainder (namely 2) when divided by 6. Another potential issue arises from
the fact that there are many representatives for [3]6 and [5]6. For example, [3]6 = [15]6 and [5]6 = [23]6.
The relation θ6 will not be a function if it does not pair [[15]6 , [23]6] with [2]6. However, this also is not a
problem, since

15 + 23 = 38 and 38 ≡ 2MOD(6)

We have just demonstrated that, at least for [[3]6 , [5]6] ∈ [Z6]
2, the pairing provided by the relation θ6 is

independent of the representatives selected for the residue classes. This is the key to the general proof that
θn is a binary function.

Suppose that ([[i]n, [j]n] , [a]n) ∈ θn and ([[i]n, [j]n] , [b]n) ∈ θn. To prove that θn is a function, we
first prove that [a]n = [b]n. According to the way we have defined θn, we know that a ≡ (i+ j)MOD(n) and
b ≡ (i+ j)MOD(n). Of course, this tells us that a ≡ bMOD(n), and this allows us to conclude that [a]n = [b]n.
Ordinarily, this is enough to prove that a relation is a function; but, in this case, we must take into account the
fact that there are many different ways to represent the pair [[i]n, [j]n]. Suppose that ([[i]n, [j]n] , [a]n) ∈ θn
and suppose further that [i]n = [x]n and [j]n = [y]n. We must show that ([[x]n, [y]n] , [a]n) ∈ θn. This
means we must show that a ≡ (x+ y)MOD(n). By assumption, we know a ≡ (i+ j)MOD(n). Since Corollary
14 tells us that x+ y ≡ (i+ j)MOD(n), the desired result follows from transitivity.

**********
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The previous example shows that the binary relation θn defined on Zn is actually a binary operation.
In keeping with this, we will represent the pairing with an appropriate operation symbol. In particular, for
all [a]n , [b]n , [c]n ∈ Zn, we will write

[a]n �n [b]n = [c]n ⇐⇒ [a+ b]n = [c]n ⇐⇒ c ≡ (a+ b)MOD(n) ⇐⇒ ([[a]n , [b]n] , [c]n) ∈ θn

When working with a binary operation on a finite set like Zn, it is common to summarize the effects
of the operation using an operation table. An operation table lists the elements of the set in the topmost
row and leftmost column (in the same order). The rest of the table entries are the result of performing
the operation on the ordered pairs whose first coordinate comes from the leftmost column and whose second
coordinate comes from the top row. For example, the table below summarizes the operation �4 for the set
Z4.

�4 [0]4 [1]4 [2]4 [3]4
[0]4 [0]4 [1]4 [2]4 [3]4
[1]4 [1]4 [2]4 [3]4 [0]4
[2]4 [2]4 [3]4 [0]4 [1]4
[3]4 [3]4 [0]4 [1]4 [2]4

In an operation table, the element listings comprise the Zero Row and the Zero Column. It is
traditional (though not necessary) to list the elements in the same order for both. In the table above,
the entry in Row 3, Column 4 is the output obained from [2]4 �4 [3]4. Notice the we used the smallest
nonnegative representative for each output. This is not necessary, but it makes the table much easier to
interpret.

The binary operation �4 is defined by a computational rule, and the operation table above simply
summarizes the results of applying this rule. Tables can be used to define operations directly with no
reference to a computational rule. Consider the table presented below.

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

This table directly defines a binary operation (called ∗) on the set S = {e, a, b, c}. There is no obvious
computational formula for computing the output of this operation; all the information about output is
contained in the table.

Definition 58 Let X be a nonempty set and let f : X2 −→ X be a binary operation on X. We say that
f is commutative provided f(a, b) = f(b, a) for all (a, b) ∈ X2. If we let a∗b = f(a, b), then commutativity
means a ∗ b = b ∗ a for all a, b ∈ X.

Example 59 Consider the binary operation � defined on Z by the rule x�y = x+y−2xy. Is this operation
commutative?

Solution. We should first point out that it is clear the relation is a function, since the output rule is purely
integer arithmetic and therefore can only assign one integer number to any pair (x, y) of integers. This is
why we did not bother to write the rule using formal relation notation. To determine whether or not the
operation is commutative, we either need to prove that x � y = y � x for all integers x and y, or else we need
to give a specific counterexample. Since integer addition and multiplication are both commutative, we see
that

x � y = x+ y − 2xy = y + x− 2yx = y � x

Hence, this operation is commutative.
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**********

Example 60 Consider the binary relation θ on the set [Z+]2 ×Q defined by

([m.n] , k) ∈ θ ⇐⇒ k =
(mn)!

(m− 1)!

1. Is this relation a binary operation on the positive integers?

2. If so, is this operation commutative?

Solution. As in the previous example, the defining rule in the relation is purley integer arithmetic, so
we could have dispensed with the formal relation notation. Recall that the factorial is a unary function
()! :W −→ Z+ defined by

(j)! =

{
1 if j = 0

1× 2× ...× j if j > 0

We know that θ is a binary function. We are therefore justified in writing the relation using function
notation:

θ(m,n) =
(mn)!

(m− 1)!

While it is clear from the outset that θ is a binary function from [Z+]2 to Q, it is not clear that θ is an
operation. Since the domain of θ is specified to be pairs of positive integers, we must show that the output
of θ is always a positive integer. Observe that the associativity of integer multiplication tells us

(mn)! = 1× 2× 3× ...× (m− 1)×m× (m+ 1)× ...× (mn)
= [1× 2× 3× ...× (m− 1)]×m× (m+ 1)× ...× (mn)
= (m− 1)!×m× (m+ 1)× ...× (mn)

Consequently, (m− 1)! is a factor of (mn)!; and this means θ(m,n) ∈ Z+.

We are now justified in writing θ using appropriate operation notation. For example, we could let
mB n = θ(m,n). If this operation is commutative, then for all m,n ∈ Z+ we must have

mB n = (mn)!

(m− 1)! =
(nm)!

(n− 1)! = nBm

This equation looks suspicious, since we know mn = nm, but we also know that m − 1 6= n − 1 in general.
This suggests that we should look for a counterexample, and it turns out there are many. For example,
observe that

2 . 3 =
6!

1!
= 720 but 3 . 2 =

6!

2!
= 360

**********

Definition 61 Let X be a nonempty set and let f : X2 −→ X be a binary operation on X. We say that
f is associative provided f(f(a, b), c) = f(a, f(b, c)) for all a, b, c ∈ X. If we let a ∗ b = f(a, b), then
associativity means (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ X.

Since binary operations can only operate on pairs of elements, associativity is an important property to
have when we need to operate simultaneously on sequences of elements. (Most shortcuts that you learned
for adding lists of integers in your head rely on associativity.)
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Example 62 Is either of the operations B or � defined in the last two examples associative?

Solution. The operation B is not associative, since

(1B 3)B 2 = 12!

5!
1B (3B 2) = 360!

On the other hand, the operation � is associative. To see why, observe that

(a � b) � c = (a+ b− 2ab) � c = (a+ b− 2ab) + c− 2(a+ b− 2ab)c = (a+ b+ c)− 2(ab+ ac+ bc) + 4abc

a � (b � c) = a � (b+ c− 2bc) = a+ (b+ c− 2bc)− 2a(b+ c− 2bc) = (a+ b+ c)− 2(ab+ ac+ bc) + 4abc

**********

Example 63 Let X be any nonempty set and let [X −→ X] denote the set of all unary functions f : X −→
X. Show that function composition is an operation on [X −→ X] which is always associative but not always
commutative.

Solution. A binary operation on [X −→ X] must take every pair of functions (f, g) from X to X and
assign to it exactly one function h from X to X. Let f, g ∈ [X −→ X] and recall that the composition
f ◦ g : X −→ X is the function defined by (f ◦ g)[x] = f(g(x)). Consequently, by definition, function
composition represents a binary operation on [X −→ X]. We will let ◦ denote the operation of function
composition. The operation ◦ is always associative by Theorem 44.

If X is a singleton (that is, if X = {a}), then [X −→ X] is only a singleton as well. In particular,
[X −→ X] = {ε}, where ε is the identity function on X. In this extreme case, function composition must
be commutative on [X −→ X]. On the other hand, suppose that X contains at least two elements. Let
a, b ∈ X be distinct and let f, g ∈ [X −→ X] be defined by

f(x) = a g(x) = b

Consider the functions f ◦ g and g ◦ f . Observe that (f ◦ g)[a] = f(g(a)) = f(b) = a while (g ◦ f)[a] =
g(f(b)) = g(a) = b. Since [f ◦ g](a) 6= [g ◦ f ](a), we may conclude that f ◦ g 6= g ◦ f . Consequently, function
composition is not a commutative operation on [X −→ X] when X contains at least two elements.

**********

Definition 64 Let X be any nonempty set. A bijection f : X −→ X is called a permutation on X. The
family of all permutations on X will be denoted by ℘X .

Notice that ℘X ⊆ [X −→ X]. A permutation on a set X is actually a bijective unary operation
on that set, but the term “operation” is seldom used when discussing permutations. Theorem 44 along
with Exercises 5.12 and 5.13 tell us that function composition forms an associative binary operation on ℘X .
Families of permutations under function composition will play a critical role in much of what we do in the
next chapter.

Example 65 If X contains at least three distinct elements, show that function composition is not commu-
tative on ℘X .
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Solution. The counterexample used to show that function composition is not commutative on [X −→ X]
when X contains at least two elements will not work here, because the particular functions chosen are not
bijections. In the current example, having three distinct elements will be critical. Let a, b, c ∈ X be
distinct and let Y = X − {a, b, c}. Define f : X −→ X and g : X −→ X as follows

f(x) =


x if x ∈ Y
c if x = a
a if x = b
b if x = c

g(x) =


x if x ∈ Y
b if x = a
a if x = b
c if x = c

Notice that f and g are simply the identity function on the set Y ; hence, it should be clear that both are
bijections. Now, observe that

(f ◦ g)[a] = f(g(a)) = f(b) = a (g ◦ f)[a] = g(f(a)) = g(c) = c

Since (f ◦ g)[a] 6= (g ◦ f)[a], we may conclude that f ◦ g 6= g ◦ f for these particular functions. This, of
course, is enough to prove that function composition is not commutative on ℘X .

**********

When X contains exactly n elements, the family ℘X will contain exactly n! functions. It is common to
let X = {1, 2, ..., n}, and it is common to write ℘n for the family of permutations on X. It is also common
to write the members of ℘n using tabular notation. For example, the six members of ℘3 will be

ε :

(
1 2 3
1 2 3

)
α :

(
1 2 3
2 1 3

)
β :

(
1 2 3
3 2 1

)

γ :

(
1 2 3
1 3 2

)
δ :

(
1 2 3
3 1 2

)
ζ :

(
1 2 3
2 3 1

)
Example 66 Construct the operation table for the family ℘3 under function composition.

Solution. We need to fill in the following table.

◦ ε α β γ δ ζ

ε
α
β
γ
δ
ζ

The first row and first column are easy to fill in, since ε is the identity function on X = {1, 2, 3} and we
know that ε ◦ f = f and f ◦ ε = f for all f ∈ ℘3 by Exercise 5.10. Consequently, we know

◦ ε α β γ δ ζ

ε ε α β γ δ ζ
α α
β β
γ γ
δ δ
ζ ζ

The remainder of the table will have to be filled in by direct computation, and we can use the tabular
notation to make the computations easier to write down. For example, suppose we want to compute α ◦ γ.
In tabular notation, we have

α ◦ γ :
(
1 2 3
2 1 3

)
◦
(
1 2 3
1 3 2

)
=

(
1 2 3
2 3 1

)
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We filled in the final table one column at a time by reading the column assignments from right to left in the
composition. For example, we see that γ sends 3 to 2. Since α sends 2 to 1, we know that α ◦ γ sends 3 to
1. Formally, we have

(α ◦ γ)[3] = α(γ(3)) = α(2) = 1

but the tabular notation makes this easy to see. Using the same approach, we see that

α◦β :
(
1 2 3
2 1 3

)
◦
(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
α◦δ :

(
1 2 3
2 1 3

)
◦
(
1 2 3
3 1 2

)
=

(
1 2 3
3 2 1

)

α◦α :
(
1 2 3
2 1 3

)
◦
(
1 2 3
2 1 3

)
=

(
1 2 3
1 2 3

)
α◦ζ :

(
1 2 3
2 1 3

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
These computations allow us to fill in the second row of the table.

◦ ε α β γ δ ζ

ε ε α β γ δ ζ
α α ε δ ζ β γ
β β
γ γ
δ δ
ζ ζ

The remaining rows of the table are filled in using the same approach. The complete table is given below;
verification is left as an exercise.

◦ ε α β γ δ ζ

ε ε α β γ δ ζ
α α ε δ ζ β γ
β β ζ ε δ γ α
γ γ δ ζ ε α β
δ δ γ α β ζ ε
ζ ζ β γ α ε δ

**********

EXERCISES FOR SECTION 5

1. Which of the binary relations below is an operation?

(a) θ ⊆ [Z+]2 × Z+ defined by ([b, c] , a) ∈ θ ⇐⇒ a = b+ c

(b) β ⊆ [Z+]2 × Z+ defined by ([b, c] , a) ∈ β ⇐⇒ a|(b+ c)

2. Construct the operation table for Z6 = {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6} under the operation �6.

3. When a binary operation is defined by a table, it is relatively easy to check for commutativity – simply
check to see if the table is symmetric about the main diagonal. (The elements must be listed in the
same order in the zero row and zero column for this trick to work.) Which of the following binary
operations on X = {a, b, c, d, e} are commutative?

(a)

� a b c d e

a e c a b d
b c e c d a
c a b e c b
d c d a e c
e d c b c e

(b)

� a b e d c

a a a a a a
b a b e d c
e a e c b d
d a d b c e
c a c d e b

(c)

� b d c a e

b b d c a e
d d c a e b
c c a e b d
a a e b d c
e e b d c a
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4. Explain why the trick used in Exercise 3 works. In other words, explain why symmetry about the
main diagonal in an operation table is suffi cient to show the operation is commutative.

5. Unfortunately, there is no simple visual trick to determine whether or not a table-defined operation is
associative – this can only be done using case-by-case analysis. Verify that the operation below on
the set X = {e, a, b, c} is associative.

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

6. Construct the operation table for ℘2 under function composition and show that composition is com-
mutative on this set.

7. Verify that the operation table for ℘3 given in Example 58 above is correct.

8. Consider the subset S = {ε, a, b, c} of ℘4 where

ε :

(
1 2 3 4
1 2 3 4

)
a :

(
1 2 3 4
3 1 4 2

)
b :

(
1 2 3 4
4 3 2 1

)
c :

(
1 2 3 4
2 4 1 3

)
Show that function composition is a commutative binary operation on S. (Construct the operation
table for S.)

9. Show that �8 is a binary operation on the subset T = {[0]8, [2]8, [4]8, [6]8} of Z8. (Construct the
operation table for T .)

10. Show that function composition is not a binary operation on the subset U = {ε, β, ζ} of ℘3. (What
happens when you construct the operation table for U?)

11. Show that �6is not a binary operation on the subset V = {[1]6, [3]6, [5]6} of Z6. (What happens when
you construct the operation table for V ?)

12. Each of the relations below is a binary operation on R. Which ones are associative? Which ones are
commutative? (You may assume that real number addition and multiplication are commutative and
associative.)

(a) x} y = x+ 2y + 4

(b) x ∗ y = |x+ y|
(c) x~ y = Max(x, y) (That is, x~ y is the larger of the two numbers.)

13. Let n be a fixed positive integer and let Zn = {[0]n, ..., [n − 1]n} denote the family of residue classes
modulo n that we introduced in the previous section. Show that the binary operation �non Zn is
commutative and associative.

14. Show that the binary operation z on Z+ defined by mzn =GCF(m,n) is commutative and associative.

15. Let n be a fixed positive integer and let Zn = {[0]n, ..., [n − 1]n} denote the family of residue classes
modulo n that we introduced in the previous section. Define a binary relation µn ⊆ [Zn]

2×Zn by the
formula

([[i]n, [j]n] , [k]n) ∈ µn ⇐⇒ k ≡ (ij)MOD(n)
Prove that this relation is a binary operation on Zn.

16. The binary operation defined in Problem 14 is called multiplication modulo n. For [a]n , [b]n, [c]n ∈ Zn,
let �n be defined by

[a]n �n [b]n = [c]n ⇐⇒ [ab]n = [c]n ⇐⇒ c ≡ (ab)MOD(n) ⇐⇒ ([[a]n , [b]n] , [c]n) ∈ µn

Show that multiplication modulo n is commutative and associative.
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17. Construction the operation table for Z8 under multiplication modulo 8.

18. Show that multiplication modulo 8 is a binary operation on the set S = {[1]8 , [3]8 , [5]8 , [7]8}.
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