MATH 4510 REVIEW FOR EXAM I

In Problems 1-4, let $X = \{a, b, c, d, e\}.$

1. Determine which of the following binary relations on the set X are reflexive, symmetric, or transitive. For those that are not, give a specific counterexample to show why.

(a)
$$\theta = \{(a, a), (e, e)\}$$

(b) $\alpha = \{(b, d), (d, e), (a, a), (d, b), (b, b), (e, d)\}$
(c) $\beta = \{(a, a), (a, b), (b, b), (c, c), (c, a), (e, e), (a, c), (d, d), (c, b)\}$

2. Construct the partition on X induced by the equivalence relation θ given below.

 $\theta = \{(b, e), (a, a), (e, a), (b, c), (b, b), (c, b), (e, c), (a, e), (c, c), (d, d), (a, c), (e, e), (a, b), (b, a), (c, e), (c, a), (e, b)\}$

3. Construct the equivalence relation on X induced by the partition

$$\mathcal{F} = \{\{a, c, e\}, \{b, d\}\}$$

- 4. Consider the family of subsets $\mathcal{F} = \{\{a, c, e\}, \{b, c, d\}\}$. Construct the binary relation $\alpha = \{(x, y) \in X \times X : x, y \in S \text{ for some } S \in \mathcal{F}\}$. Is this an equivalence relation?
- 5. Determine whether the following binary relations are reflexive, symmetric, or transitive. If they are not, give a specific counterexample to indicate which property or properties fail.
 - (a) $\theta \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $(m, n) \in \theta$ if and only if m n is even.
 - (b) $\alpha \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ defined by $(m, n) \in \alpha$ if and only if $|m n| \leq 1$.
 - (c) $\beta \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ defined by $(m, n) \in \beta$ if and only if mn is odd.
- 6. Let $U = \{1, 2, 3\}$ and consider the binary relation λ on $U^2 \times U$ defined by

 $\lambda = \{([1,1],1), ([1,2],3), ([1,3],3), ([2,1],3), ([2,2],1), ([2,3],3), ([3,1],3), ([3,2],3), ([3,3],1)\}$

- (a) Explain why this relation is a binary operation on U.
- (b) Is this a commutative operation on U?
- (c) Is this an associative operation on U?
- 7. Consider the binary operation $\odot : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $m \odot n = |2m n|$.
 - (a) Is this operation commutative?
 - (b) Is this operation associative?
- 8. Consider the binary operation $\dagger : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by $x \dagger y = \sqrt[4]{x^4 + y^4}$.
 - (a) Is this operation commutative?
 - (b) Is this operation associative?
- 9. A binary operation on the set $X = \{a, b, c\}$ has been partially defined by the table below. If we know that the operation is commutative, complete the table.

*	a	b	c
a	c	a	
b		b	c
c	a		b

10. What is the remainder obtained when 6^{100} is divided by 40?

11. Which of the following integers is a member of $\left[2241\right]_{25}?$

$$a = 66$$
 $b = -59$ $c = 118$

- 12. What is the smallest positive representative of $[3141]_{70} \boxplus_{70} [-1414]_{70}$?
- 13. Write out the operation table for \mathbb{Z}_6 under multiplication modulo 6.
- 14. Compute $f\circ g$, $f\circ g^{-1},$ and $g\circ f^{-1}$ for the permutations given below.

$$f:\left(\begin{array}{rrrr}1 & 2 & 3 & 4\\ 2 & 1 & 4 & 3\end{array}\right) \qquad g:\left(\begin{array}{rrrr}1 & 2 & 3 & 4\\ 1 & 3 & 2 & 4\end{array}\right)$$