NAME:

In the problems that follow, let $f(x) = \frac{1}{6}(2x^3 - 3x^2 - 12x) + 1$.

10 pts 1. Compute f'(x) and use the derivative to identify the critical numbers for f. Do not classify the critical numbers. You must show your work for full credit.

Solution. First, observe that $f'(x) = x^2 - x - 2 = (x + 1)(x - 2)$. The critical numbers for f will occur when f'(x) = 0. Now,

$$f'(x) = 0 \Longrightarrow (x+1)(x-2) = 0 \Longrightarrow x = -1 \text{ or } x = 2$$

Therefore, f has two critical points, namely x = -1 and x = 2.

10 pts 2. Use the First Derivative Test to determine whether the critical numbers for f produce relative maximum or minimum outputs for f. You must show your work for full credit.

Solution. To apply the First Derivative Test, we need to select a "test number" from each of the three subsets of the real number line determined by the critical numbers.

- Select x = -2 from the ray $(-\infty, -1]$. Since f'(-2) = 8 > 0, we know the graph of f in INCREASING to the left of x = -1.
- Select x = 0 from the interval [-1, 2]. Since f'(0) = -2 < 0, we know the graph of f is DECREASING between x = -1 and x = 2.
- Select x = 3 from the ray $[2, +\infty)$. Since f'(3) = 4 > 0, we know the graph of f is INCREASING to the right of x = 2.

Since the graph of f changes from increasing to decreasing as we cross over x = -1, we know that f has a relative maximum output at x = -1. Since the graph of f changes from decreasing to increasing as we cross over x = 2, we know that f has a relative minimum output at x = 2.