MATH 1910 PRACTICE EXAM IV

1. _____One antiderivative for $f(x) = e^x$ is the function

(a) $F(x) = \frac{1}{2}e^{x^2}$ (b) $F(x) = e^x - \sqrt{2}$ (c) $F(x) = \frac{1}{2}e^{2x}$ (d) $F(x) = \ln(x) + \pi$ (e) $F(x) = 3e^x$

2. _____ In order to compute the antiderivative family for $f(x) = \frac{\cos(1/x)}{x^2}$ we need the substitution

(a) $u = \cos(x)$ (b) $u = \frac{1}{x}$ (c) $u = \frac{1}{x^2}$ (d) $u = x^2$ (e) u = x

3. The function $F(x) = x \sin(x) + 10$ is an antiderivative for which of the following functions?

(a)
$$f(x) = x \cos(x) + \sin(x)$$
 (b) $f(x) = \frac{x^2}{2} \sin(x) - \cos(x)$
(c) $f(x) = -\frac{x^2}{2} \cos(x)$ (d) $f(x) = x \cos(x)$
(e) $f(x) = \frac{x^2}{2} \cos(x)$

4. _____ The second derivative for the function $y = f(x) = x \ln(x) - x$ is the function

(a)
$$f''(x) = 0$$

(b) $f''(x) = \ln(x)$
(c) $f''(x) = \frac{1}{x}$
(d) $f''(x) = -\frac{1}{x^2}$
(e) $f''(x) = 1 + \frac{1}{x \ln(x)}$

5. _____ By making an appropriate substitution, we know that $\int \frac{x^2}{(1+x^3)^4} dx$

(a) is equal to
$$3\int \frac{u}{(1+u)} du$$
 (b) is equal to $\int x^2 \left(\frac{1}{u^4}\right) du$
(c) is equal to $\frac{1}{2}\int \frac{u}{1+u^6} du$ (d) is equal to $\int u^{-4} du$
(e) is equal to $\frac{1}{3}\int u^{-4} du$

Problems 6-7 refer to the graph of a function r = f(x) below. Suppose that y = F(x) is an antiderivative for the function f.

6. _____ What are the critical numbers for the function F in the viewing window shown?

- (a) Critical numbers are x = -3 and x = -1 (b) Critical number is x = -3
 - (d) Critical number is x = -1
- (c) Critical number is x = 0(e) Critical numbers are x = -1 and x = 0
- 7. _____ In the viewing window shown, at what value of x does the function F have a local minimum output?
 - (a) at no value of x(b) at x = -3
 - (d) at x = -1(c) at x = 0
 - (e) at x = 3

Problems 8 and 9 refer to the graph below. This graph shows the second derivative function for a function y = f(x).

Second Derivative Function for f

8. _____ Based on the graph shown above, where does the function f have inflection points?

- (a) x = 1 only (b) x = -2 and x = 1
- (c) x = 0 only (d) x = -1 only
- (e) no value of x

9. Based on the graph shown above, on what input intervals is the graph of the function f concave down?

- (a) $-\infty < x < -1$ (b) -2 < x < 1(c) $1 < x < +\infty$ (d) $-\infty < x < 1$ (e) -1 < x < 1
- 10. The diagram below shows the graph of a function y = f(x). On the grid provided, sketch the graph of the second derivative function for the function f.

- 11. If f is the function whose graph is shown in Problem 10, what are the critical numbers for its derivative function f'?
- 12. Construct the second derivative function for the function $y = f(x) = \arctan(x)$.
- 13. Construct the second derivative function for the function $y = f(x) = \ln(\sin(x))$.
- 14. Suppose that $y = f(x) = \ln(1 + x^2)$. What are the critical numbers for the function? Does the function f have any local maximum or minimum outputs?
- 15. Suppose that $y = f(x) = \ln(1 + x^2)$. What are the critical numbers for the derivative function r = f'(x)? Are any of these critical numbers inflection points for the function f?
- 16. Suppose that the derivative function for a function y = f(x) is given below. Based on this formula, at which input values does the function f have a local maximum and/or a local minimum output?

$$f'(x) = \frac{x-2}{x^2}$$

17. Suppose that the second derivative for a function y = f(x) is given below. Based on this formula, at which input values does the *derivative* function r = f'(x) have a local maximum and/or a local minimum output?

$$f''(x) = \frac{x^2 - 9}{x - 1}$$

18. Show that $F(x) = \sqrt{2} + e^x \sin(x)$ is one antiderivative for the function $f(x) = e^x (\sin(x) + \cos(x))$.

19. Show that $F(x) = x \arcsin(x) + 8$ is one antiderivative for the function $f(x) = \frac{\sqrt{1 - x^2} \arcsin(x) + x}{\sqrt{1 - x^2}}$.

20. Construct the antiderivative family for the function $y = f(x) = 3x + \ln(x)$.

- 21. Construct the antiderivative family for the function $y = f(x) = \frac{4 \sec^2(x) x^{1/3}}{\pi}$.
- 22. Evaluate $\int x \cos(x^2 + 1) dx$.
- 23. Evaluate $\int \frac{\sin(x^{-1})}{x^2} dx$.

24. Construct the antiderivative family for the function $y = f(x) = \frac{x^2}{(x^3 + 2)^2}$.

25. Evaluate
$$\int \left(x^{-1} + 3\frac{\sec^2(x)}{\tan(x)}\right) dx$$