MATH 1910 PRACTICE FINAL EXAM

Last Updated April 2012

1. _____ The slope of the tangent line to $f(x) = \sin(x)\cos(x)$ at $x = \pi/4$ is

- (a) m = 0 (b) m = 1/2
- (c) m = 1 (d) m = 1/2
- (e) m = -1

2. _____ We know that
$$\lim_{u \longrightarrow 2} \frac{u^2 - 4}{(u - 3)(u - 2)^2}$$

(a) is equal to 0 (b) is equal to -4
(c) is equal to $+\infty$ (d) is equal to $-\infty$

(e) does not exist

3. _____ If $f(x) = \sqrt{1 + x^2}$, then which of the following limits correctly represents f'(2)?

(a)
$$f'(2) = \lim_{\Delta x \to 0} \frac{\sqrt{5 + (\Delta x)^2} - \sqrt{5}}{\Delta x}$$
 (b) $f'(2) = \lim_{\Delta x \to 0} \frac{2 - \sqrt{1 + (2 + \Delta x)^2}}{\Delta x}$
(c) $f'(2) = \lim_{\Delta x \to 0} \frac{\sqrt{3 + (\Delta x)^2} - 2}{\Delta x (3 + (\Delta x)^2)}$ (d) $f'(2) = \lim_{\Delta x \to 0} \frac{\sqrt{1 + (2 + \Delta x)^2} - \sqrt{5}}{\Delta x}$
(e) $f'(2) = \lim_{\Delta x \to 0} \frac{(2 + \Delta x)^2 - 4}{\Delta x (\sqrt{1 + (2 + \Delta x)^2} - \sqrt{5})}$

4. _____ The equation of the tangent line to
$$f(x) = x^{2/3} + x + 1$$
 at the point (1,3) is given by
(a) $y = \frac{5}{3} [x - 1] + 3$ (b) $y = \left(\frac{2 + \sqrt[3]{x}}{3\sqrt[3]{x}}\right) [x - 1] + 3$
(c) $y = \left(\frac{2 + \sqrt[3]{x}}{3\sqrt[3]{x}}\right) [x - 3] + 1$ (d) $y = \frac{2}{3} [x - 3] + 1$
(e) $y = 3 \left[x - \frac{5}{3}\right] + 1$

(a) $f(W) = \frac{1000}{W}(500 - W)$ (b) $f(W) = 500W - W^2$

(c)
$$f(W) = \frac{2000}{W} + 2W$$
 (d) $f(W) = W^2 + 1000$

(e)
$$f(W) = 1000W - \frac{2}{W}$$

^{5.} _____ Suppose a farmer wants to construct a rectangular corral of maximum area using 1000 feet of fencing. If L and W denote the length and width of the corral, then the optimization formula as a function of W will be

Problems 6 and 7 refer to the graph of the function f shown below.

6. _____ Based on the graph above, we know that on the open interval (0,2)

- (a) f'(x) < 0 and f''(x) < 0 (b) f'(x) < 0 and f''(x) > 0
- (c) f'(x) > 0 and f''(x) < 0 (d) f'(x) > 0 and f''(x) > 0
- (e) f'(x) < 0 and f''(x) = 0

7. _____ The slope of the tangent line to f at x = 1 is

- (a) $m \approx -1$ (b) $m \approx -.5$ (c) $m \approx -2$ (d) $m \approx -.4$
- (e) $m \approx -.22$

For the curve $xy = \cos(y)$, we know that $dy = x - \sin(y)$ dy = y

(a)
$$\frac{dy}{dx} = \frac{x - \sin(y)}{y}$$
 (b) $\frac{dy}{dx} = -\frac{y}{x + \sin(y)}$
(c) $\frac{dy}{dx} = \frac{x + \sin(y)}{x}$ (d) $\frac{dy}{dx} = \frac{x + \sin(y)}{y}$
(e) $\frac{dy}{dx} = \frac{\sin(y) - x}{y}$

9. <u>Suppose that f is a twice-differentiable function on the open interval (a, b). If f'(x) > 0 and f''(x) < 0 on this interval, then we know f is</u>

- (a) decreasing and concave up (b) decreasing and concave down
- (c) increasing and concave up (d) increasing and concave down
- (e) none of the above

10. _____ If
$$f(t) = \cos(t^3)$$
, then we know
(a) $f'(t) = -\sin(t^3)$ (b) $f'(t) = -3t^2\sin(t^3)$
(c) $f'(t) = 3t^2\cos(t) - t^3\sin(t)$ (d) $f'(t) = t^2(\sin(t) - \cos(t^3))$
(e) $f'(t) = 3t^2\cos(t)$

11. _____ Suppose we know that g(x) = 2f'(x). In this case, we also know $\int_0^3 f(x)g(x)dx$

(a) is equal to $\frac{3}{4}$ (b) is equal to $\frac{9}{2}$ (c) is equal to $\frac{(f(3) - f(0))^2}{2}$ (d) is equal to $\frac{9}{4}$ (e) is equal to $f(3)^2 - f(0)^2$

12. _____ After applying the appropriate substitution in $\int_{x=1}^{x=4} \frac{\sin(2+\ln(x))}{x} dx$, the new limits will be

(a) u = 1 and 4 (b) u = 1 and u = 1/4(c) u = 2 and $u = 2 + \ln(4)$ (d) $u = \sin 2$ and $u = \sin(2 + \ln(4))$ (e) u = 1 and u = 2

13. _____ If
$$F(t) = \int_{1}^{t} x\sqrt{x^2 - 1} dx$$
, then $F'(3)$
(a) is equal to $\sqrt{3}$ (b) is equal to $2\sqrt{2}$
(c) is equal to $\frac{2\sqrt{2}}{3}$ (d) is equal to $\frac{2\sqrt{3}}{3}$
(e) is equal to $6\sqrt{2}$

14. _____ The second derivative of
$$f(x) = 3^x + \ln(x)$$
 will be
(a) $f'(t) = x(x-1)3^{x-2} + \frac{1}{x}$ (b) $f'(t) = x(x-1)3^{x-2} - \ln(x)$
(c) $f'(t) = 3^x \ln^2(3) - \frac{1}{x^2}$ (d) $f'(t) = 3^x \ln(9) + \frac{1}{x}$
(e) $f'(t) = 3^x - \frac{1}{x^2}$

15. _____ If a closed rectangular box with dimensions x, y, and z of minimum surface area has a square bottom and fixed volume of 1000 cubic inches, then its optimization formula as a function of x is

$$f(x) = \frac{2x^3 + 4000}{x}$$

The relevant domain for the optimization function will be

- (a) $0 \le x < +\infty$ (b) $0 < x < +\infty$
- (c) $0 < x \le 1000$ (d) $0 \le x \le 10\sqrt[3]{2}$
- (e) $0 < x < 10\sqrt[3]{2}$

Problems 16-18 refer to the graph of a function f below. The curve is an arc of a circle of radius 2.

16. _____ Based on this diagram, we know
$$\int_{-3}^{2} f(x) dx$$

(a) is equal to $\frac{4\pi - 7}{4}$ (b) is equal to $\pi - 1$ (c) is equal to $\frac{\pi}{4} - 3$ (d) is equal to $\pi - 2$ (e) is equal to $3 - \frac{\pi}{4}$

17. _____ If
$$F(x) = \int_0^x f(t)dt$$
, then $F(-1)$
(a) is equal to 1 (b) is equal to 0
(c) is equal to $\frac{1}{2}$ (d) is equal to $-\frac{1}{2}$
(e) is equal to -1

18. _____ If $G(x) = \int_1^x f(t)dt$, then G will have a relative minimum at (a) x = 0 only (b) x = -1 only (c) x = -3 only (d) x = -3 and x = 0

(e) no value of x

19. _____ If
$$f(x) = \ln(1+x^3)$$
, then the equation of the tangent line to f at $x = 1$ will be

(a)
$$y = \ln(2)[x-1] + \frac{1}{3}$$

(b) $y = \frac{3x^2}{1+x^3}[x-1] + \ln(2)$
(c) $y = \frac{1}{3}[x - \ln(2)] + 1$
(d) $y = \frac{3}{2}[x-1] + \ln(2)$
(e) $y = \ln(2)\left[x - \frac{2}{3}\right] + 1$

20. _____ If $x = \arcsin(y^2)$, then differentiating with respect to t gives us

(a)
$$\frac{dx}{dt} = \frac{y^4}{1+y^4}$$
 (b) $\frac{dx}{dt} = \frac{1}{1+y^4}\frac{dy}{dt}$
(c) $1 - \frac{1}{\sqrt{1-y^4}}\frac{dy}{dt} = 0$ (d) $\frac{dy}{dt} = \frac{\sqrt{1-y^4}}{2y}\frac{dx}{dt}$
(e) $\frac{dy}{dt} = \frac{y}{1-y^2}\frac{dx}{dt}$

21. _____ Which of the following is an antiderviative for $f(t) = \ln(t)$?

(a)
$$F(t) = 8 + \frac{1}{t}$$
 (b) $F(t) = t \ln(t) - t + 10$
(c) $F(t) = \ln(t) + t$ (d) $F(t) = e^t - 6$
(e) $F(t) = \frac{\ln^2(t)}{2}$

22. _____ The function $F(x) = 2x \cos(x^2) - 8$ is an antiderivative for the function

(a)
$$f(x) = 2\cos(x^2) - 4x^2\sin(x^2)$$
 (b) $f(x) = -2\sin(x^2)$
(c) $f(x) = \sin(x^2) - 8x + 5$ (d) $f(x) = \sin(x^2)$
(e) $f(x) = 4x^2\sin(x^2) - 8x$

23. _____ Which of the following are critical points for $f(x) = x + x^{2/3} - 8$?

- (a) There are no critical points. (b) Both x = 1 and x = -1
- (c) Only x = 0 (d) Both x = 0 and x = -8/27
- (e) Both x = 1 and x = 1/2

24. _____ What is the exact value of $\int_{-1}^{1} (x^2 + 2x) dx$? (a) 2/3 (b) 2 (c) 4 (d) 0

(e) 3/2

25. _____ What is the value of $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$?

- (a) 1 (b) 0
- (c) 1/2 (d) 3/4
- (e) Does not exist

26. _____ The second derivative of $f(x) = e^{-x^2}$ is

(a)
$$f''(x) = -2xe^{-x^2}$$
 (b) $f''(x) = 2e^{-x^2}(2x^2 - 1)$
(c) $f''(x) = 4e^{-x^2}$ (d) $f''(x) = xe^{-x^2}(2+x)$
(e) $f''(x) = e^{-x^2}$

Problems 27-31 refer to the graph of the function f shown below.

30. _____ Suppose that F is an antiderivative for f. At which points will F have a relative minimum?

Х

(a) At x = 1(b) At x = 2(c) At x = 1 and x = 3(d) At x = 2 and x = 5(e) At x = -1 and x = 5

31. _____ Suppose that $F = \int_4^t f(x) dx$. What is the value of F at the point where its relative maximum occurs?

- (a) 2 (b) 0
- (c) 1/2 (d) -3/2
- (e) 3/2

The net area between the graph of $f(x) = 4x^3 - 1$ and the x-axis on the interval [0, 2] 32. (a) 12 (b) 3.5 (c) 14 (d) 7 (e) 0 33. _____ The slope of the tangent line to the curve $\sqrt{x} - x\sqrt{y} = -1$ at the point (1,4) is (a) m = -12(b) m = -6(c) m = 1/12(d) m = 1/6(e) undefined 34. _____ What is the exact value of $\int_{-1}^{1} \frac{3x}{x^2+1} dx$? (a) 0 (b) 1 (c) $\frac{3}{2}\ln(2)$ (d) $\frac{\pi}{2}$ (e) $\frac{3}{2}$ 35. Which of the following statements is true of $f(x) = \arctan(x)$? **I** The function f has critical points at $x = \pm 1$. **II** The function f has a relative maximum at x = 1. **III** The function f has a relative minimum at x = -1. (a) Only Statement I. (b) Only Statements I and II. (c) Only Statements I and III. (d) All are true.

(e) None are true.

36. Suppose that f is a twice-differentiable function. If f'(3) = 0 and f''(3) = 10, then which of the following statements is true?

I The function f has an inflection point at x = 3.

II The function f is concave up at x = 3.

III The function f has a relative minimum at x = 3.

- (a) Only Statement I. (b) Only Statement II.
- (c) Only Statements I and III. (d) Only Statements II and III.
- (e) None are true.

37. $\underline{\qquad}$ At which values of x is the tangent line to $f(x) = x^3 + 3x - 5$ parallel to the line y = 15x + 4?

- (a) $x = \pm 2$ (b) $x = \pm \sqrt{3}$
- (c) x = 0 (d) x = 5
- (e) $x = \sqrt{5}$

_____ The absolute extrema for the function $f(x) = 4 - 5x + x^5$ on the interval [-3, 2] occur 38. _ (a) x = -3 and x = -1(b) x = -3 and x = 2(d) x = 1 and x = 2(c) x = -1 and x = 1(e) x = -3 and x = 139. _____ The appropriate substitution in the indefinite integral $\int \frac{\sqrt{x}}{\cos^2(x\sqrt{x})} dx$ would be (a) $x = \sqrt{x}$ (c) $u = \cos^2(x\sqrt{x})$ (e) $u = x\sqrt{x}$ (b) u = x(d) $u = \cos(x\sqrt{x})$ 40. _____ When the appropriate substitution has been made for $\int_0^2 \frac{x^3 + 1}{(x^4 + 4x + 1)^3} dx$ the new

limits will be

(a)	u = 0 and $u = 2$	(b) $u = 1$ and $u = 25$
(c)	u = 1 and $u = 9$	(d) $u = 0$ and $x = 16$
(e)	u = 0 and $u = 8$	

Problems 41-45 refer to the graph of the function f shown below.

- Based on the graph above, the points in the open interval (-2, .4) guaranteed by the 41. Mean Value Theorem occur at
 - (a) $x \approx -1.83$ and $x \approx -.83$
 - (c) $x \approx -1.35$ and $x \approx -.25$

(b) $x \approx -1.83$ and $x \approx .37$

(d) $x \approx -1.60$ and $x \approx .10$

(e) $x \approx -1.22$ and $x \approx -.40$

42.

On the half-open interval (-1.8, 0], we know that f has

- (a) no critical points
- (c) an absolute maximum only
- (b) an absolute minimum only
- (d) an absolute maximum and minimum
- (e) no absolute maximum or minimum

43. _____ At which of the following points is f'(x) clearly positive?

(a) x = -1 (b) x = .1(c) x = -.6 (d) x = -.3(e) x = -.8

44. _____ At which of the following points is f''(x) clearly positive?

(a) x = -1.3 (b) x = -1(c) x = .3 (d) x = -.3(e) x = -.8

45. _____ If F is an antiderivative for f, then we know that F has inflection points at

- (a) $x \approx -1.83$, $x \approx -.83$, and $x \approx .10$ (b) $x \approx -1.83$, $x \approx -.83$, and $x \approx .10$ (c) $x \approx -1.35$ and $x \approx -.25$ (d) $x \approx -1.60$ and $x \approx .10$
- (c) $x \approx -1.35$ and $x \approx -.25$ (e) $x \approx -1.30$ and $x \approx -.30$

Problems 46-48 refer to the function and its derivatives given below.

$$f(x) = \ln\left(4x^2 - x + 1\right) \qquad f'(x) = \frac{8x - 1}{4x^2 - x + 1} \qquad f''(x) = -\frac{48x^2 - 8x + 1}{(4x^2 - x + 1)^2}$$

46. _____ The function f has critical points at

- (a) x = 1/8(b) $x = \frac{1 \pm \sqrt{15}}{8}$ (c) x = 1/8 and $x = \frac{1 \pm \sqrt{15}}{8}$ (d) x = 0
- (e) There are no critical points.

47. _____ The function f has inflection points at

(a)
$$x = \frac{1 \pm 4\sqrt{2}}{12}$$

(b) $x = \frac{1 \pm \sqrt{15}}{8}$
(c) $x = \frac{1 \pm 4\sqrt{2}}{12}$ and $x = \frac{1 \pm \sqrt{15}}{8}$
(d) $x = 1/8$

(e) There are no inflection points.

48. _____ The value of f at its relative minimum will be approximately

(a) -.06454 (b) .62861

(c)
$$.51653$$
 (d) -1.3863

(e) The function f does not have a relative minimum.

49. ______ A closed circular cylinder of radius R and height H must have a surface area of 2000 square inches. If we wish to maximize the volume of this cylinder, what will its optimization formula be as a function of R? (The surface area of a cylinder is $S = 4\pi R H$, and the volume is $V = \pi R^2 H$.)

(a)
$$f(R) = 500R$$

(b) $f(R) = 2\left(\frac{\pi R^3 + 4000}{R}\right)$
(c) $f(R) = \frac{1000R - \pi R^2}{2}$
(d) $f(R) = \frac{8000}{R}$
(e) $f(R) = 2\left(\frac{4000 - \pi R^3}{R}\right)$

50. ______ A wall rises vertically from a patch of level ground, and a ten-foot ladder is leaning against this wall. If the top of the ladder is sliding down the wall at a constant speed of k feet per second, how fast is the base of the ladder moving when the top is b feet from the ground?

(a) $\frac{dx}{dt} = \frac{1}{\sqrt{100 - b^2}} (50 - bk)$ feet per second (b) (c) $\frac{dx}{dt} = -\frac{bk}{\sqrt{100 - b^2}}$ feet per second (d)

(b)
$$\frac{dx}{dt} = \frac{50 - b}{\sqrt{100 - b^2}}k$$
 feet per second
(d) $\frac{dx}{dt} = b\left(50 - \sqrt{100 - b^2}k\right)$ feet per second

(e)
$$\frac{dx}{dt} = \frac{\sqrt{100 - b^2}}{b}k$$
 feet per second

ANSWERS

1) A	11) C	21) B	31) A	41) C
2) E	12) C	22) A	32) C	42) D
3) D	13) E	23) D	33) B	43) B
4) A	14) C	24) A	34) A	44) D
5) B	15) B	25) D	35) E	45) E
6) A	16) D	26) B	36) D	46) A
7) C	17) E	27) B	37) A	47) E
8) B	18) E	(28) E	38) B	48) A
9) D	19) D	29) C	39) E	49) C
10) B	20) D	30) E	40) B	50) C