NAME:

6 pts 1. What is the formula for $\frac{df}{dt}$ if $f(t) = t^2 \cos(t)$? You must show your steps for full credit.

$$\frac{df}{dt} = \frac{d}{dt} \left[t^2 \cos(t) \right]$$
$$= \frac{d}{dt} \left[t^2 \right] \cos(t) + t^2 \frac{d}{dt} \left[\cos(t) \right] = 2t \cos(t) - t^2 \sin(t)$$

8 pts 2. What is the equation of the tangent line to the graph of $f(x) = x^{-1} + 2x^{-2}$ at the point (1, f(1))? You must show your steps for full credit.

Solution. We know that the equation of the tangent line will be y = f'(1)[x-1] + f(1). Now,

$$f(1) = (1)^{-1} + 2(1)^{-2} = 1 + 2 = 3$$

$$f'(x) = \frac{d}{dx} \left[x^{-1} + 2x^{-2} \right]$$

= $\frac{d}{dx} \left[x^{-1} \right] + 2 \frac{d}{dx} \left[x^{-2} \right]$
= $-x^{-2} - 4x^{-3}$

Therefore, we see that $f'(1) = -(1)^{-2} - 4(1)^{-3} = -5$. Consequently, the equation of the tangent line to the graph of f at the prescribed point will be

$$y = -5[x-1] + 3$$
 or $y = -5x + 8$

6 pts 3. Differentiate the function $h(z) = \frac{1-z}{1+z}$. You must show your steps for full credit.

Solution. Let f(z) = 1 - z and let g(z) = 1 + z. It follows that f'(z) = -1 and g'(z) = 1. Therefore, we know

$$\frac{dh}{dz} = \frac{g(z)f'(z) - f(z)g'(z)}{g^2(z)}$$

$$= \frac{(1+z)(-1) - (1-z)(1)}{(1+z)^2}$$

$$= \frac{-1-z-1+z}{(1+z)^2}$$

$$= -\frac{2}{(1+z)^2}$$