MATH 1920 PRACTICE EXAM I

100 points

NAME:

Please place the letter of your selection in the blank provided. These questions are worth five points each.

1. _____One antiderivative for $f(x) = e^x$ is the function 5 pts

(a)
$$F(x) = \frac{1}{2}e^{x^2}$$
 (b) $F(x) = e^x - \sqrt{2}$

(c)
$$F(x) = \frac{1}{2}e^{2x}$$
 (d) $F(x) = \ln(x) + \pi$
(e) $F(x) = 3e^x$

2. _____ In order to compute the antiderivative family for $f(x) = \frac{\cos(1/x)}{x^2}$ we need the substi-5 pts

(a)
$$u = \cos(x)$$
 (b) $u = \frac{1}{x}$

(c)
$$u = \frac{1}{x^2}$$
 (d) $u = x^2$
(e) $u = x$

(e)
$$u = x$$

3. _____ The function $F(x) = x \sin(x) + 10$ is a solution to which of the following differential equations? 5 pts

(a)
$$y' = x\cos(x) + \sin(x)$$
 (b) $y' = \frac{x^2}{2}\sin(x) - \cos(x)$
(c) $y' = -\frac{x^2}{2}\cos(x)$ (d) $y' = x\cos(x)$

(c)
$$y' = -\frac{x^2}{2}\cos(x)$$
 (d) $y' = x\cos(x)$

(e)
$$y' = \frac{x^2}{2}\cos(x)$$

In Problem 4, suppose we know that

$$\int_{a}^{b} f(x)dx = -5 \qquad \int_{a}^{b} g(x)dx = 10$$

4. ______ Based on this information, we know $\int_{a}^{a} [3f(x) - 6g(x)] dx$ 5 pts

(a) is equal to
$$75$$
 (b) is equal to -5

(c) is equal to 5 (d) is equal to
$$-45$$

(e) is equal to -75

5. _______ By making an appropriate substitution, we know that $\int \frac{x^2}{(1+x^3)^4} dx$ 5 pts

(a) is equal to
$$3\int \frac{u}{(1+u)}du$$
 (b) is equal to $\int x^2 \left(\frac{1}{u^4}\right)du$ (c) is equal to $\frac{1}{2}\int \frac{u}{1+u^6}du$ (d) is equal to $\int u^{-4}du$

(c) is equal to
$$\frac{1}{2} \int \frac{u}{1+u^6} du$$
 (d) is equal to $\int u^{-4} du$

(e) is equal to
$$\frac{1}{3} \int u^{-4} du$$

6. _____ After applying the appropriate substitution in $\int_{x=1}^{x=4} \frac{\sin(2+\ln(x))}{x} dx$, the new limits will be

(a)
$$u = 1 \text{ and } 4$$

(b)
$$u = 1$$
 and $u = 1/4$

(c)
$$u = 2$$
 and $u = 2 + \ln(4)$

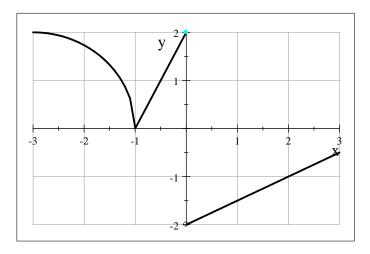
(a)
$$u = 1$$
 and 4 (b) $u = 1$ and $u = 1/4$ (c) $u = 2$ and $u = 2 + \ln(4)$ (d) $u = \sin 2$ and $u = \sin(2 + \ln(4))$

(e)
$$u = 1 \text{ and } u = 2$$

5 pts 7. _____ If
$$F(t) = \int_1^t x \sqrt{x^2 - 1} dx$$
, then $F'(3)$

- (a) is equal to $\sqrt{3}$
- (b) is equal to $2\sqrt{2}$
- (c) is equal to $\frac{2\sqrt{2}}{3}$ (d) is equal to $\frac{2\sqrt{3}}{3}$
- (e) is equal to $6\sqrt{2}$

Problems 8 - 10 refer to the graph of a function f below. The curve is one-quarter of a circle of radius



8. ______ Based on this diagram, we know $\int_{-2}^{2} f(x)dx$

- (a) is equal to $\frac{4\pi 7}{4}$ (b) is equal to $\pi 1$ (c) is equal to $\frac{\pi}{4} 3$ (d) is equal to $\pi 2$

- (e) is equal to $3 \frac{\pi}{4}$

9. ______ If $F(x) = \int_0^x f(t)dt$, then F(-1)

- (a) is equal to 1
- (b) is equal to 0
- (c) is equal to $\frac{1}{2}$ (d) is equal to $-\frac{1}{2}$
- (e) is equal to -1

5 pts 10. _____ The arc-lenth of the function $f(x) = \cos^2(x)$ on the interval $0 \le x \le \pi$ is given by the formula

(a)
$$\int_0^\pi \cos(x) dx$$

(b)
$$\int_0^{\pi} \cos^2(x) dx$$

(a)
$$\int_0^{\pi} \cos(x) dx$$
 (b) $\int_0^{\pi} \cos^2(x) dx$ (c) $\int_0^{\pi} (1 + 2\sin(x)\cos(x)) dx$ (d) $\int_0^{\pi} \sqrt{1 + 2\sin(x)\cos(x)} dx$

(d)
$$\int_0^{\pi} \sqrt{1 + 2\sin(x)\cos(x)} dx$$

(e)
$$\int_0^{\pi} \sqrt{1 + 4\sin^2(x)\cos^2(x)} dx$$

11. What is the average value of the function $f(x) = x - \frac{1}{x}$ on the interval $1 \le x \le 6$? Show your work.

15 pts 12. Use the Fundamental Theorems of Calculus to compute $\int_{-1}^{3} \frac{x^2}{(1+x^3)^4} dx$. Show your work.

15 pts 13. Consider the function $f(x) = \sqrt{1+4x^2}$ on the interval [1,3].

(a) If we divide [1,3] into six subintervals of equal width, then the partition we obtain is

 $x_0 =$ ______ $x_1 =$ ______ $x_2 =$ ______ $x_3 =$ ______

 $x_4 =$ _____ $x_5 =$ _____ $x_6 =$ _____

(b) Use a trapezoid estimate with six subintervals to estimate $\int_1^3 f(x)dx$. Show your work.

10 pts 14. Use the Fundamental Theorems of Calculus to compute the exact value of $\int_0^1 \left(2 + \sin(\pi x) - \frac{x}{1 + x^2}\right) dx$. Show your work.