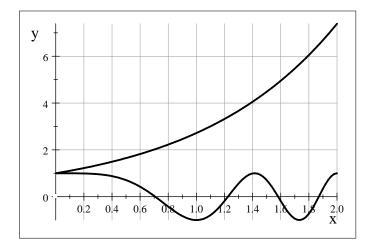

MATH 1920 PRACTICE EXAM II

1. Let \mathcal{R} be the finite region enclosed between the straight lines f(x) = 4 - x, g(x) = x and h(x) = 4 + 2x



- (a) Set up the definite integral that computes the area of \mathcal{R} .
- (b) Let V be the volume obtained by revolving \mathcal{R} about the line x=2. Set up the definite integral that computes V using the Method of Washers.
- 2. Let \mathcal{R} be the region enclosed between the curves $f(x) = -6x^2 + 5x + 1$ and $g(x) = |\sin(2\pi x)|$ on the interval $0 \le x \le 1$.

- (a) Set up the definite integral that computes the area of \mathcal{R} .
- (b) Let V be the volume obtained by revolving \mathcal{R} about the x-axis. Set up the definite integral that computes V using the Method of Washers.

- 3. Use integraton by parts to compute $\int_0^2 xe^x dx$.
- 4. Use an appropriate substitution to help compute $\int_0^2 x \cos(\pi x^2) dx$.
- 5. Let \mathcal{R} be the region enclosed between the curves $f(x) = e^x$ and $g(x) = \cos(\pi x^2)$ on the interval $0 \le x \le 2$.

Let V be the volume of the solid obtained by revolving \mathcal{R} about the y-axis. Use the Method of Shells to compute V.

6. Let \mathcal{R} be the region in Problem 5, and let V be the volume of the solid obtained by revolving \mathcal{R} about the line x=2. Set up the definite integral the computes V using the Method of Shells.