MATH 1920 EXAM I

100 points

NAME:

1. Write down the antiderivative family for each function below. These are worth two points each.

(a) $f(x) = \sin(x)$ (b) $g(y) = \sec^2(y)$ (c) $h(z) = \frac{1}{z}$ (d) $k(a) = e^a$ $\int f(x)dx = -\cos(x) + C$ $\int g(y)dy = \tan(y) + C$ $\int h(z)dz = \ln |z| + C$

(e)
$$j(b) = b^{1/2}$$
 $\int j(b)db = \frac{2}{3}b\sqrt{b} + C$

Please place the letter of your selection in the blank provided. These questions are worth five points each.

5 pts 2. <u>C</u> One solution to the differential equation $y' = \sin(x) + 1$ will be

(a)
$$y = \cos(x)$$

(b) $y = \cos\left(\frac{x^2}{2}\right) + 5$
(c) $y = -\cos(x) + x - \pi$
(d) $y = \sin(x) + x + 2$
(e) $y = \arcsin(x) - 3$

5 pts 3. <u>C</u> After making the appropriate u substitution for $\int_{t=3}^{t=5} \frac{2t}{\sqrt{t^2-1}} dt$ the new limits will be

(a)
$$u = 0$$
 and $u = 2$ (b) $u = 6$ and $u = 10$

- (c) u = 8 and u = 24 (d) u = 3 and u = 5
- (e) $u = 2\sqrt{2}$ and $u = 2\sqrt{6}$

Use the graph of a function f below to answer Problem 4.

5 pts 5. $\underline{\mathbf{E}}$ If we partition the interval [3, 13] into twelve subintervals of equal width, then each subinterval will have width

(a)
$$\triangle x = 10$$
 (b) $\triangle x = 1$
(c) $\triangle x = \frac{1}{2}$ (d) $\triangle x = 12$
(e) $\triangle x = \frac{5}{6}$

5 pts 6. $\frac{\mathbf{C}}{f(x) = \ln(x) \text{ on the interval } 1 \le x \le 4?}$ Which of the following formulas gives the arc-length for the graph of the function

(a)
$$\int_{1}^{4} \left(1 + \frac{1}{x}\right) dx$$
 (b) $\int_{1}^{4} \sqrt{1 + \frac{1}{x}} dx$
(c) $\int_{1}^{4} \sqrt{1 + \frac{1}{x^{2}}} dx$ (d) $\int_{1}^{4} \ln(x) dx$
(e) $\int_{1}^{4} (x \ln(x) - x) dx$

5 pts 7. $\underline{\mathbf{A}}_{1 \le x \le 9?}$ Which of the following formulas gives the average value for $f(x) = \sqrt{x}$ on the interval

(a)
$$\frac{1}{8} \int_{1}^{9} \sqrt{x} dx$$
 (b) $\int_{1}^{9} \sqrt{x} dx$
(c) $\frac{1}{2} \int_{1}^{3} \frac{1}{2\sqrt{x}} dx$ (d) $\frac{1}{8} \int_{1}^{9} x dx$
(e) $\frac{1}{4} \int_{1}^{3} \sqrt{1 + \frac{1}{4x}} dx$

10 pts 8. Solve the initial value problem $y' = 2x + x^{-1}$, where y(1) = 2. Show your work.

Solution. First, observe that the solution family for this differential equation will be

$$y = \int \left[2x + x^{-1} \right] dx = x^2 + \ln|x| + C$$

Now, under the assumption that y(1) = 2, we know that

$$2 = y(1) = 1^2 + \ln(1) + c \Longrightarrow 2 = 1 + C \Longrightarrow 1 = C$$

Therefore, the particular solution we want is $y = x^2 + \ln |x| + 1$.

15 pts 9. Find the average value of $f(x) = \sqrt{x}$ on the interval $1 \le x \le 9$. Show your work.

10.

$$A = \frac{1}{8} \int_{1}^{9} x^{1/2} dx = \frac{1}{8} \left(\frac{2}{3}\right) x \sqrt{x} \Big|_{1}^{9} = \frac{1}{12} \left[27 - 1\right] = \frac{13}{6}$$

15 pts 11. Find the exact value of $\int_0^{-1} \frac{1}{(4x-1)^2} dx$. Show your work.

Solution. To begin, let u = 4x - 1. This tells us that $\frac{du}{dx} = 4$. When x = 0, we know u = -1; and, when x = -1, we know u = -5. Therefore,

$$\int_{0}^{-1} \frac{1}{(4x-1)^{2}} dx = \int_{u=-1}^{u=-5} u^{-2} \left[\left(\frac{1}{4}\right) \frac{du}{dx} \right] dx$$
$$= \frac{1}{4} \int_{u=-1}^{u=-5} u^{-2} du$$
$$= -\frac{1}{4} \left(\frac{1}{u}\right) \Big|_{u=-1}^{u=-5}$$
$$= -\frac{1}{4} \left[-\frac{1}{5} + 1 \right]$$
$$= -\frac{1}{5}$$

15 pts 12. Suppose you are given the following table of data for a function f and are asked to estimate the value of $\int_{1}^{3} f(x) dx$.

Index j	0	1	2	3	4	5
Value of x_j	1.0	1.4	1.8	2.2	2.6	3.0
Approximate value	-2.78	-1.87	0.52	0.78	-0.25	-1.15
of $f(x_j)$						

(a) What is the width of each subinterval?

Based on the table, each subinterval has width $\Delta x = 0.4$. On the other hand, notice that there are five subintervals being used —

$$I_0 = [1, 1.4]$$
 $I_1 = [1.4, 1.8]$ $I_2 = [1.8, 2.2]$ $I_3 = [2.2, 2.6]$ $I_4 = [2.6, 3.0]$

Therefore, the width of each subinterval will be $\Delta x = (3-1)/5 = 0.4$.

(b) Use the Trapezoid Rule to estimate $\int_{1}^{5} f(x) dx$. Show your work.

$$\int_{1}^{3} f(x)dx \approx \left(\frac{1}{2}\right) (0.4) \left[-2.78 + (2)(-1.87) + (2)(0.52) + (2)(0.78) + (2)(-0.25) - 1.15\right] \approx -1.11$$