MATH 1920 PRACTICE EXAM I

 $100 \ points$

NAME:

Please place the letter of your selection in the blank provided. These questions are worth five points each.

5 pts 1. _____One antiderivative for
$$f(x) = e^x$$
 is the function

(a)
$$F(x) = \frac{1}{2}e^{x^2}$$
 (b) $F(x) = e^x - \sqrt{2}$
(c) $F(x) = \frac{1}{2}e^{2x}$ (d) $F(x) = \ln(x) + \pi$
(e) $F(x) = 3e^x$

Justification. We need a function whose derivative is f.

5 pts 2. <u>**B**</u> In order to compute the antiderivative family for $f(x) = \frac{\cos(1/x)}{x^2}$ we need the substitution

(a)
$$u = \cos(x)$$
 (b) $u = \frac{1}{x}$
(c) $u = \frac{1}{x^2}$ (d) $u = x^2$
(e) $u = x$

Justification. The general rule for substitution is to let u be the argument of the composite factor. Of course, any substitution is valid only if its derivative also appears as a factor the function f.

5 pts 3. A The function
$$F(x) = x \sin(x) + 10$$
 is an antiderivative for

(a)
$$f(x) = x \cos(x) + \sin(x)$$
 (b) $f(x) = \frac{x^2}{2} \sin(x) - \cos(x)$
(c) $f(x) = -\frac{x^2}{2} \cos(x)$ (d) $f(x) = x \cos(x)$
(e) $f(x) = \frac{x^2}{2} \cos(x)$

Justification. Take the derivative of the function F.

In Problem 4, suppose we know that

$$\int_{a}^{b} f(x)dx = -5 \qquad \int_{a}^{b} g(x)dx = 10$$

5 pts 4. <u>**E**</u> Based on this information, we know $\int_a^b [3f(x) - 6g(x)] dx$

- (a) is equal to 75 (b) is equal to -5
- (c) is equal to 5 (d) is equal to -45
- (e) is equal to -75

Justification. Apply the Sum and Constant Multiple Rules.

$$\int_{a}^{b} \left[3f(x) - 6g(x)\right] dx = 3\int_{a}^{b} f(x)dx - 6\int_{a}^{b} g(x)dx = -75$$

5 pts 5. <u>E</u> By making an appropriate substitution, we know that $\int \frac{x^2}{(1+x^3)^4} dx$

(a) is equal to
$$3\int \frac{u}{(1+u)} du$$
 (b) is equal to $\int x^2 \left(\frac{1}{u^4}\right) du$
(c) is equal to $\frac{1}{2}\int \frac{u}{1+u^6} du$ (d) is equal to $\int u^{-4} du$
(e) is equal to $\frac{1}{3}\int u^{-4} du$

5 pts 6. <u>C</u> After applying the appropriate substitution in $\int_{x=1}^{x=4} \frac{\sin(2+\ln(x))}{x} dx$, the new limits

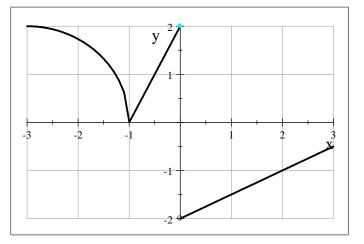
(a) u = 1 and 4 (b) u = 1 and u = 1/4(c) u = 2 and $u = 2 + \ln(4)$ (d) $u = \sin 2$ and $u = \sin(2 + \ln(4))$ (e) u = 1 and u = 2

Justification. The correct substitution is $u = 2 + \ln(x)$, since $\frac{du}{dx} = \frac{1}{x}$ is a factor of the integrand.

5 pts 7. E If
$$F(t) = \int_{1}^{t} x\sqrt{x^{2} - 1} dx$$
, then $F'(3)$
(a) is equal to $\sqrt{3}$ (b) is equal to $2\sqrt{2}$
(c) is equal to $\frac{2\sqrt{2}}{3}$ (d) is equal to $\frac{2\sqrt{3}}{3}$
(e) is equal to $6\sqrt{2}$

Justification. The First Fundamental Theorem of Calculus tells us that $F'(t) = t\sqrt{t^2 - 1}$.

Problems 8 - 10 refer to the graph of a function f below. The curve is an arc of a circle of radius 2.



5 pts 8. **D** Based on this diagram, we know
$$\int_{-3}^{2} f(x) dx$$

(a) is equal to
$$\frac{4\pi - 7}{4}$$
 (b) is equal to $\pi - 1$
(c) is equal to $\frac{\pi}{4} - 3$ (d) is equal to $\pi - 2$
(e) is equal to $3 - \frac{\pi}{4}$

Justification. The net area in question consists of a quarter circle of radius 2 and right triangle above the x-axis and a trapezoid below the x-axis. Consequently, we know

$$\int_{-3}^{2} f(x)dx = \int_{-3}^{-1} f(x)dx + \int_{-1}^{0} f(x)dx + \int_{0}^{2} f(x)dx = \frac{1}{4}(4\pi) + 1 - 3$$
5 pts 9. E If $F(x) = \int_{0}^{x} f(t)dt$, then $F(-1)$
(a) is equal to 1 (b) is equal to 0
(c) is equal to $\frac{1}{2}$ (d) is equal to $-\frac{1}{2}$
(e) is equal to -1
Justification. We know that

$$F(-1) = \int_0^{-1} f(t)dt = -\int_{-1}^0 f(t)dt = -1$$

5 pts 10. <u>**E**</u> The arc-length of the function $f(x) = \cos^2(x)$ on the interval $0 \le x \le \pi$ is given by the formula

(a)
$$\int_{0}^{\pi} \cos(x) dx$$
 (b) $\int_{0}^{\pi} \cos^{2}(x) dx$
(c) $\int_{0}^{\pi} (1+2\sin(x)\cos(x)) dx$ (d) $\int_{0}^{\pi} \sqrt{1+2\sin(x)\cos(x)} dx$
(e) $\int_{0}^{\pi} \sqrt{1+4\sin^{2}(x)\cos^{2}(x)} dx$

Justification. Arc-length is given by the formula $\mathcal{L} = \int_a^b \sqrt{1 + [f'(x)]^2} dx.$

10 pts 11. What is the average value of the function $f(x) = x - \frac{1}{x}$ on the interval $1 \le x \le 6$? Show your work. Solution. The average value is given by the formula

$$A = \frac{1}{6-1} \int_{1}^{6} \left(x - \frac{1}{x}\right) dx$$

= $\frac{1}{5} \left(\frac{x^{2}}{2} - \ln|x|\Big|_{1}^{6}\right)$
= $\frac{1}{5} \left[\left(\frac{36}{2} - \ln(6)\right) - \left(\frac{1}{2} - \ln(1)\right)\right]$
= $\frac{1}{5} \left(\frac{35}{2} - \ln(6)\right)$

10 pts 12. Use the Fundamental Theorems of Calculus to compute $\int_0^1 \frac{x^2}{(1+x^3)^4} dx$. Show your work.

Solution. The exact value will be given by

$$\int_{0}^{1} \frac{x^{2}}{(1+x^{3})^{4}} dx = \int_{0}^{1} \frac{x^{2}}{(1+x^{3})^{4}} dx \quad \text{Let } u = 1+x^{3} \text{ so } x^{2} = \frac{1}{3} \frac{du}{dx}$$
$$= \int_{u=1}^{u=2} \frac{1}{u^{4}} \left[\frac{1}{3} \frac{du}{dx}\right] dx$$
$$= \frac{1}{3} \int_{u=1}^{u=2} u^{-4} du$$
$$= -\frac{1}{9} u^{-3} \Big|_{u=1}^{u=2}$$
$$= -\frac{1}{9} \left(\frac{1}{8} - 1\right)$$
$$= \frac{7}{56}$$

15 pts 13. Consider the function $f(x) = \sqrt{1+4x^2}$ on the interval [1,3].

(a) If we divide [1,3] into six subintervals of equal width, then the partition we obtain is

$$=$$
 1 $x_1 =$ 4/3 $x_2 =$ 5/3 $x_3 =$ 2

$$x_4 = \underline{7/3} \qquad x_5 = \underline{8/3} \qquad x_6 = \underline{3}$$

(b) Use a trapezoid estimate with six subintervals to estimate $\int_{1}^{5} f(x)dx$. Show your work. Solution. Observe that $\Delta x = 1/3$. With this in mind, the left-hand estimate will be

$$\int_{1}^{3} f(x)dx \approx \frac{1}{6} \left(\sqrt{1+4[1]^{2}} + 2\sqrt{1+4\left[\frac{4}{3}\right]^{2}} + 2\sqrt{1+4\left[\frac{5}{3}\right]^{2}} + 2\sqrt{1+4[2]^{2}} \right) + \frac{1}{6} \left(2\sqrt{1+4\left[\frac{7}{3}\right]^{2}} + 2\sqrt{1+4\left[\frac{8}{3}\right]^{2}} + \sqrt{1+4(3)^{2}} \right) \\ \approx \frac{1}{6} \left(2.236 + 5.696 + 6.96 + 8.246 + 9.546 + 10.852 + 6.083 \right) \\ \approx 8.27$$

10 pts 14. Use the Fundamental Theorems of Calculus to compute the exact value of $\int_0^1 \left(2 + \sin(\pi x) - \frac{x}{1+x^2}\right) dx$. Show your work.

 x_0

$$\begin{aligned} \int_0^1 \left(2 + \sin(\pi x) - \frac{x}{1+x^2} \right) dx &= \int_0^1 2dx + \int_0^1 \sin(\pi x) dx - \int_0^1 \frac{x}{1+x^2} dx \\ &= 2x|_{x=0}^{x=1} + \frac{1}{\pi} \int_{u=0}^{u=\pi} \sin(u) du - \int_0^1 \frac{x}{1+x^2} dx \quad \text{Let } u = \pi x \text{ so } \frac{du}{dx} = \pi. \\ &= 2x|_{x=0}^{x=1} - \frac{1}{\pi} \cos(u)|_{u=0}^{u=\pi} - \frac{1}{2} \int_{u=1}^{u=2} \frac{1}{u} du \quad \text{Let } u = 1+x^2 \text{ so } \frac{du}{dx} = 2x. \\ &= 2x|_{x=0}^{x=1} - \frac{1}{\pi} \cos(u)|_{u=0}^{u=\pi} - \frac{1}{2} \ln |u||_{u=1}^{u=2} \\ &= [2(1) - 2(0)] - \frac{1}{\pi} [\cos(\pi) - \cos(0)] - [\ln(2) - \ln(1)] \\ &= 2 + \frac{2}{\pi} - \ln(2) \end{aligned}$$