
ABSTRACT ALGEBRA

Rings, Integral Domains, and Fields

J.B. Hart

January 7, 2012



2



Chapter 1

Introduction to Rings

1.1 What Is a Ring?

The concept of a group gives us a mathematical structure sufficiently complex to
allow us to solve simple linear equations of the form ax = b and xa = b. We now
turn attention to developing a mathematical structure which will allow us to
manipulate polynomials. In high school algebra, the two most important aspects
of polynomial manipulation are factoring and finding roots. The mathematical
structures we derive must be complex enough to allow us to study both activities
in a meaningful way.

Polynomials naturally involve two binary operations — addition and mul-
tiplication. Consequently, our model systems should also have two binary op-
erations, one to play the role of “addition” and the other to play the role of
“multiplication”. The order in which the terms of a polynomial appear should
not matter; hence, our addition should be commutative. Since multiplying two
polynomials requires that multiplication distributes over addition, we should
require the same of our multiplication operation.

A ring is a triple R = (R,+, ·), where R is a set, and + and · are binary
operations on R. We require (R,+) to be a commutative group, the operation
· to be associative, and a · (b + c) = ab + ac and (b + c) · a = ba + ca for all
a, b, c ∈ R. (Note that we adopt the usual juxtaposition of letters ab to denote
a · b when no confusion will result.)

The identity element of (R,+) will be denoted by 0R or simply 0 when no
confusion will result. We will call this element the zero of the ring. In keeping
with the additive notation for the group operation, we will let −x denote the
group inverse of x. (NOTE: We are not assuming that −x = (−1)x; indeed,
this equation might not even make sense in a particular context.)

We do not require that (R, ·) be a group. If the operation · gives rise to a
(multiplicative) identity, we call it the unity of R and denote it by 1R (or simply
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1). We do not require the multiplication to be commutative. When it is, we say
the ring is commutative.

In a ring R = (R,+, ∗), we typically let an denote the product of an element
a with itself n times (under the ring multiplication) for any positive integer n.
We do not define negative powers of a for rings in general and only define a0

when R has unity (in which case a0 = 1R). We sometimes use the symbol na
to represent the sum of a with itself n times (under the ring addition). This
notation has definite disadvantages (since it can be confusing); and we will
usually avoid it.

Rings are very common structures. The set Z = (Z,+, ·) of integers under
ordinary integer addition and multiplication forms a commutative ring (with
unity). The set Q = (Q,+, ·) of rational numbers under ordinary rational
addition and multiplication forms a commutative ring (with unity), as does the
set R = (R,+, ·) of real numbers and C = (C,+, ·) of complex numbers.

The set 2Z of all even integers forms a commutative ring (without unity)
under the usual operations of integer addition and multiplication.

Exercise 1.1.1. Let G = (G, ∗) be a commutative group. Prove that (G,+, ·)
is a ring when a+ b = ab and a · b = e, where e is the identity of G.

Exercise 1.1.2. Show that the set Zn of integers modulo n forms a commuta-
tive ring with unity under ordinary integer addition and multiplication modulo
n.

Exercise 1.1.3. Let Z[i
√
5] = {m+ in

√
5 : m,n ∈ Z}, where i =

√
−1. Show

that Z[i
√
5] forms a commutative ring with unity under complex addition and

multiplication.

Of course, not all rings are commutative. Let N2(Z) denote the set of all
2 × 2 matrices with integer entries. Under matrix addition and multiplication,
the triple N2(Z) = (N2(Z),+, ·) is a noncommutative ring with unity.

Exercise 1.1.4. In high school algebra, when we see an equation like ab = ac,
we automatically conclude that b = c (if a ̸= 0). In the ring N2(Z) defined above,
find matrices A, B, and C such that A is not the zero-matrix, AB = AC, but
B ̸= C. (This tells us that the familiar multiplicative cancellation property of
integers does not hold in all rings.)

Exercise 1.1.5. In high school algebra, when we see an equation like ab = 0,
we automatically conclude that a = 0 or b = 0. In the ring Z4, find nonzero
elements a and b such that ab = 0. (In ring theory, such elements are known as
zero-divisors.)
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Exercise 1.1.6. Show that a ring can possess at most one unity.

Let G = (G, ·) be a group. An endomorphism is a mapping f : G −→ G
such that f(ab) = f(a)f(b) for all a, b ∈ G. (An endomorphism is just a homo-
morphism from G to itself.) Let Hom(G) denote the set of all endomorphisms
on G.

Exercise 1.1.7. Construct the set Hom(Z2×Z2), where Z2 is the additive group
of integers modulo 2.

Exercise 1.1.8. Construct the set Hom(Z4), where Z4 is the additive group of
integers modulo 4.

Exercise 1.1.9. LetG = (G, ∗) be a commutative group. For all f, g ∈ Hom(G),
let f + g be defined by (f + g)(x) = f(x) ∗ g(x) and let f · g be defined by
(f · g)(x) = f(g(x)). Show that H(G) = (Hom(G),+, ·) forms a ring under these
operations.

Exercise 1.1.10. Let X be any set and let Su(X) denote the family of all
subsets of X (the so-called powerset of X. Show that S(X) = (Su(X),∪,∩) is a
commutative ring with unity.

Exercise 1.1.11. Let R = (R,+, ∗) be a ring. An element a ∈ R is idempo-
tent provided a2 = a. We say that R is idempotent if every element of R is
idempotent.

1. Let R be an idempotent ring. Use the fact that (a + b)2 = a + b for all
a, b ∈ R to prove that ab = −ba.

2. Use the previous result and the uniqueness of the additive inverse to prove
that an idempotent ring is commutative.

3. Show that every nonzero element of an idempotent ring has additive order
2.

Exercise 1.1.12. An idempotent ring with unity is called a Boolean ring. Let
X be any set. For A,B ∈ Su(X), let A + B = A ∪ B − (A ∩ B) denote the
disjoint union of A and B. Show that B(X) = (Su(X),+,∩) is a Boolean ring.

1.2 Zero-Divisors and Units

In this section, we will introduce several key structural properties for rings.
Some of these properties hold for all rings, and some do not. We begin with a
fundamental result valid for all rings.
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Theorem 1.2.1. Let R = (R,+, ·) be a ring. For all a, b ∈ R, the following are
true.

1. 0R · a = 0R = a · 0R

2. a · (−b) = (−a) · b = −(a · b)

3. (−a) · (−b) = a · b

Proof. We will prove Claims 1 and 2, and leave Claim 3 as an exercise. To
prove Claim (1), we will invoke some group properties. In particular, since
0R = 0R + 0R, we can say that

0R · a = (0R + 0R) · a = 0R · a+ 0R · a
by invoking the distributive property for rings. Now, letting −(0R · a) denote
the additive inverse of 0R · a, we have

0R = −(0R · a) + 0R · a = −(0R · a) + [0R · a+ 0R · a]
Now, since the group operation + is associative, we know that

−(0R · a) + [0r · a+ 0R · a] = [−(0R · a) + 0R · a] + 0R · a = [0R] + 0R · a = 0R · a

Thus, we see that 0R = 0R · a, as desired. The fact that 0R = a · 0R is proven
similarly.

To prove Claim 2, we must prove that both a · (−b) and (−a) · b act as
additive inverses for a · b. Observe that

a · (−b) + a · b = a · (−b+ b) = a · 0R = 0R

Thus, a · (−b) = −(a · b), as desired. The other equality is proven similarly.

Exercise 1.2.2. Prove Claim 3 of Theorem 1.2.1.

Exercise 1.2.3. Let R = (R,+, ∗) be a ring with unity. Prove that 1R = 0R if
and only if R contains a single element.

Theorem 1.2.1 tells us that some familiar properties from high school algebra
hold for arbitrary rings. It is important, however, not to allow this result to lure
us into taking too much for granted. In the last section, we saw, for example,
that the familiar property of cancellation need not hold in every ring. Of course,
cancellation does hold in some rings (like the ring of integers, for example); we
will now characterize those rings in which this very convenient property holds.

Let R = (R,+, ∗) be a ring and let a ∈ R. We say that a is a zero-divisor in
R provided
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• a ̸= 0R

• There exist b ̸= 0R such that a ∗ b = 0R or b ∗ a = 0R.

In Exercise 1.1.5 you proved that the ring Z4 contains zero-divisors. Zero-
divisors run counter to our intuition about how multiplication “ought” to work;
but they are actually quite common.

Exercise 1.2.4. Show that the ring N2(Z) contains zero-divisors.

Exercise 1.2.5. Show that the ring H(Z2 × Z2) contains zero-divisors.

Exercise 1.2.6. Show that an element a of the ring Zn is a zero-divisor if and
only if gcd(a, n) > 1.

Exercise 1.2.7. Let R = (R,+, ∗) be a ring and let a, b ∈ R. If a and b are
not zero divisors, show that ab and ba are not zero-divisors.

Let R = (R,+, ∗) be a ring and let a be a nonzero R. We say that a satisfies
the cancellation law if, whenever b, c ∈ R are such that a∗b = a∗c, or b∗a = c∗a,
then b = c. If every element of R satisfies the cancellation law, then we say that
the ring R is cancellative.

We know that the ring N2(Z) is not cancellative since it contains elements
which do not satisfy the cancellation law. In high school algebra, we know that
the cancellation law fails only for one type of equation, namely 0b = 0c. It turns
out this can be generalized.

Theorem 1.2.8. Let R = (R,+, ∗) be a ring. A nonzero element of R satisfies
the cancellation law if and only if it is not a zero-divisor.

Proof. Let a be a nonzero element of R which satisfies the cancellation law.
We must prove that a is not a zero-divisor. To this end, suppose b ∈ R is such
that a ∗ b = 0 or b ∗ a = 0. It will suffice to prove that this forces b = 0. By
Theorem 1.2.1 we know that a ∗ 0 = 0; hence, we know that a ∗ b = a ∗ 0. The
assumption that a satisfies the cancellation law now tells us that b = 0.

Conversely, suppose that a is not a zero-divisor. We want to prove that
a satisfies the cancellation law. Since a is not a zero-divisor, we know that
whenever ax = 0 or xa = 0, we must have x = 0. Suppose now that ab = ac. It
follows that ab− ac = 0. Now, we know from Theorem 1.2.1 that −ac = a(−c).
Hence, we have

0 = ab− ac = ab+ a(−c) = a(b− c)
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Therefore, we know that b − c = 0, which implies that b = c. We can easily
modify these arguments and show that assuming instead that ba = ca also
implies that b = c. Hence, a does indeed satisfy the cancellation law, as desired.

Exercise 1.2.9. Let R = (R,+, ∗) be a finite ring with unity and let R̂ denote
the set of all non zero-divisors of R.

1. Let a ∈ R̂. Show that the set aR̂ = {ax : x ∈ R̂} contains the same

number of elements as R̂. (Hint: Suppose two elements in aR̂ are equal
and use cancellation.)

2. Show that for each a ∈ R̂, there exist b ∈ R̂ such that ab = ba = 1.

3. Show that R̂ forms a group under the ring multiplication.

Corollary 1.2.10. A ring is cancellative if and only if it contains no zero-
divisors.

We know from experience in high school algebra that the rings of integers,
rational, real, and complex numbers are all cancellative. Formal proofs of this
would require careful definition of the operations of addition and multiplication
on these sets; and as such, are more trouble than we need take on at this time.
We will simply take this on faith.

Exercise 1.2.11. Show that the ring Zn is cancellative if and only if n is a
prime.

Corollary 1.2.12. The ring Z(i
√
5) is cancellative.

Proof. It will suffice to prove that this ring contains no zero-divisors. To this
end, let α = m+ in

√
5 and let β = u+ iv

√
5, suppose that α ̸= 0 and suppose

that αβ = 0. We must prove that β = 0. Observe that

αβ = (mu− 5nv) + i(mv + nu)
√
5

Hence, if αβ = 0, it follows that mu− 5nv = 0 and mv + nu = 0. Since α ̸= 0,
we know that either m ̸= 0 or n ̸= 0. Now, either m = 0 or m ̸= 0.

Suppose first that m = 0. This tells us that n ̸= 0. Furthermore, we must
have 5nv = 0 and nu = 0. These facts together tell us that v = u = 0 (since
the ring of integer does not contain zero-divisors); hence, we know that β = 0.

Suppose instead that m ̸= 0. The fact that mu − 5nv = 0 tells us that
mu2−5nvu = 0; and the fact that mv+nu = 0 tells us that m(5v2)+5nvu = 0.
Combining these equations tells us that

m(u2 + 5v2) = 0
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Since we are assuming that m ̸= 0, we know that u2 + 5nv2 = 0 since Z does
not contain zero-divisors. It follows that u = v = 0; hence, β = 0 in this case
as well.

Let R = (R,+, ∗) be a ring with unity 1. An element a ∈ R is a unit in R
provided there exist b ∈ R such that ab = ba = 1. When a is a unit, it has a
multiplicative inverse under the ring multiplication; it is common to use a−1 to
denote this element.

Exercise 1.2.13. Let R be a ring with unity 1. If a ∈ R is a unit, prove that
a is not a zero-divisor.

Exercise 1.2.14. Suppose that R = ({0, 1, a, b},+, ∗) is a ring. If a and b are
units, write out the multiplication table for R.

Exercise 1.2.15. Find elements of the ring N2(Z) which are neither zero-
divisors nor units.

Exercise 1.2.16. Show that an element of the ring Zn is a unit if and only if
it is not a zero-divisor.

Exercise 1.2.17. Let R = (R,+, ∗) be a ring with unity and let a, b ∈ R. If a
and b are units, show that ab is a unit (with (ab)−1 = b−1a−1).

Exercise 1.2.18. Let R = (R,+, ∗) be any ring with unity and let UR denote
its set of units. Show that UR forms a group under the ring multiplication.

Exercise 1.2.19. Let Z∞ denote the set of all infinite sequences of integers. If
a ∈ Z∞, we will let a[i] denote the ith term in a. Define an operation ⊕ on Z∞

as follows: For all a, b ∈ Z∞, let a⊕b be defined termwise by (a⊕b)[i] = a[i]+b[i].
That is, we form a⊕ b by adding a and b together termwise.

1. Show that (Z∞,⊕) is a commutative group.

2. Let R and L be mappings from Z∞ to Z∞ defined as follows:

R(a)[i] =

{
0 if, i = 0

a[i− 1] otherwise
L(a)[i] = a[i+ 1]

That is, R “shifts” the sequence a one term to the right and L “shifts” the
sequence a one term left. Show that R and L are group homomorphisms
on Z∞.

3. Show that R · L is a unit in the ring H(Z∞).

4. Show that neither R nor L is a unit in H(Z∞). (Hence, the converse of
Exercise 1.2.17 is false.)



10 CHAPTER 1. INTRODUCTION TO RINGS

1.3 Integral Domains and Fields

In many respects, a cancellative ring behaves much like the ring of integers.
Cancellative rings are sometimes called domains. Note that domains do not
have any zero-divisors. With hat tipped to the ring of integers, we say that a
commutative, cancellative ring with unity is an integral domain.

The ring of integers is, of course, an integral domain, as are the rings of
rational, real, and complex numbers under their usual operations of addition
and multiplication. In light of Exercise 1.2.11, we know that the ring Zn is an
integral domain if and only if n is a prime.

The ring N2(Z) is not an integral domain since it is not commutative (and
since it contains zero-divisors). The ring 2Z of all even integers is commutative
and cancellative, but is not an integral domain since it does not possess a unity.

Exercise 1.3.1. The conjugate of a complex number α = a+ ib (a, b both real)
is defined to be the complex number α = a − ib. Note that αα = a2 + b2. Let
Q denote the set of all matrices of the form(

α β

−β α

)
where α and β are complex numbers.

1. Show that K = (Q,+, ·) is a noncommutative ring with unity, where +
and · represent matrix addition and multiplication, respectively.

2. Show that every nonzero member of Q is a unit.

3. Explain why K is a domain. This entity is known as the ring of quaternions
(or hypercomplex numbers). Its elements are used to model rotations in
three dimensions.

Exercise 1.3.2. Let Z × Z = (Z × Z,⊕,⊗) where ⊕ and ⊗ are defined com-
ponentwise. Show that this commutative ring is not an integral domain.

Exercise 1.3.3. Consider the set F of all 2× 2 matrices of the form(
a b
−b a

)
where a and b are real numbers. Show that F = (F,+, ∗) is an integral domain,
where + and ∗ denote matrix addition and multiplication, respectively.

Exercise 1.3.4. Let 2Z denote the set of even integers. Define a new operation
∗ on 2Z by a ∗ b = (ab)/2. Prove that (2Z,+, ∗) is an integral domain.



1.3. INTEGRAL DOMAINS AND FIELDS 11

Exercise 1.3.5. Let Q denote the set of rational numbers. For a, b ∈ Q, let
a⊕b = a+b−1 and let a⊗b = ab+a+b. Show that (Q,⊕,⊗) is a commutative
ring with unity but is not an integral domain.

Exercise 1.3.6. Let Z∞ and the operation ⊕ be as defined in Exercise 1.2.19.
Define an operation ⊗ on Z∞ by (a⊗b)[i] = a[i]b[i]. That is, define the product
of two sequences a and b of integers to be the sequence whose terms are the
product of the corresponding terms in a and b. Show that Z∞ = (Z∞,⊕,⊗) is
an integral domain.

A ring R = (R,+, ∗) is called a division ring (or a skew field) provided it is a
domain in which every nonzero element is a unit. A commutative division ring
is called a field.

The ring of quaternions in Exercise 1.3.1 is a division ring, while the rational,
real, and complex numbers under their usual operations are all examples of
fields. The ring Zn is a field if and only if n is prime.

Exercise 1.3.7. Let F be the set of matrices in Exercise 1.3.3. Show that
(F,+, ∗) is a field by proving that every nonzero member of F is a unit.

Exercise 1.3.8. Let F = {a, b, c, d}. Define binary operations + and ∗ on F
according to the following tables.

+ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

* a b c d
a a a a a
b a b c d
c a c c a
d a d a d

Show that (F,+, ∗) is a field. You may assume the operations are associative,
and you may assume that ∗ distributes over +.

Theorem 1.3.9. Every finite integral domain is a field.

Proof. Of course, finiteness is key to this result, since Z is an integral domain
that is not a field. Suppose that F = (F,+, ∗) is an integral domain, where
F = {0, 1, a1, ..., an}. We need to prove that every element aj is a unit. Select
any aj ∈ F (1 ≤ j ≤ n) and consider the set

G = aj ∗ F = {0, aj , aj ∗ a1, aj ∗ a2, ..., aj ∗ an}

Since F is closed under ∗, we know that G ⊆ F . We will first prove that G = F
(so that both sets contain the same number of elements). It will suffice to prove
that all the elements of G are distinct. To this end, suppose that aj∗ak = aj∗am
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for some ak, am ∈ F . Since F is an integral domain, the cancellation laws tell
us that this implies ak = am. Hence, the elements of G are all distinct.

Now that we know G = F , we know that 1 ∈ G; this tells us that 1 = aj ∗ak
for some ak ∈ F . The element ak therefore serves as the multiplicative inverse
for aj .

Exercise 1.3.10. Construct the ring H(Z3,Z3) and show that it is a field.

Exercise 1.3.11. Let R = (R,+, ∗) be a ring. Prove that R is a division ring
if and only if the general linear equations ax+ b = c and xa+ b = c have unique
solutions for all a, b, c ∈ R.

1.4 Subrings and Ideals

In this section, we will explore some important substructures within rings. Sub-
objects of rings, like subgroups in groups, play many important roles.

Let R = (R,+, ∗) be any ring, and let S ⊆ R.

1. We say that S is a subring of R provided S is closed under the ring addition
and multiplication and is itself a ring under these operations.

2. If R has unity 1, we say that a subring S of R is unital provided 1 ∈ S.

3. If R is a division ring (or field), then we say a subring S of R is a sub
division ring (or subfield) provided S is unital; and a−1 ∈ S for every
nonzero a ∈ S.

The rings nZ of all integer multiples of a fixed integer n are all subrings of
the ring Z, although none (except for n = 1) are unital. The rational numbers
form a subfield of the real numbers, and the real numbers form a subfield of the
complex numbers.

The singleton {0R} of any ring R is always a subring; we call it the trivial
subring of R. Any subring of R which is a proper subset of R is called a proper
subring of R while R is called the improper subring of R.

Lemma 1.4.1. Let R = (R,+, ∗) be a ring and let S be a subring of R. If 0
is the additive identity of R, then 0 ∈ S and serves as the additive identity for
(S,+, ∗).

Proof. By assumption, we know S is a subring in its own right under the
operations + and ∗; hence, we know that S possesses an additive identity. Call
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this element 0S . Now, we know that 0S + 0S = 0S in S; hence, we know that
0S + 0S = 0S in R as well. Thus,

0S + 0S = 0S ⇒ 0S = −0S + 0S = 0

Hence, 0 ∈ S and is the additive identity of (S,+, ∗).

Exercise 1.4.2. Let R = (R,+, ∗) be a ring and let S be a subring of R. If
a ∈ S, show that the additive inverse (in R) for a is a member of S and serves
as the additive identity (in (S,+, ∗)) for a.

Exercise 1.4.3. Show that the set S = {0, 2, 4} is a subring of the ring Z6.
Show that S is actually a field, even though Z6 is not.

Exercise 1.4.4. Suppose that R = (R,+, ∗) is a domain. If S is a unital
subring of R, prove that S is necessarily a domain. (Hence, unital subrings of a
domain are called subdomains.)

The set of integers forms a subdomain of the rational numbers; but, of course,
does not form a subfield of the rational numbers.

Exercise 1.4.5. Let R = (R,+, ∗) be a ring and let S ⊆ R be nonempty. Show
that S is a subring of R if and only if ab ∈ S and a− b ∈ S for all a, b ∈ S.

Exercise 1.4.6. Let D2(Z) be the set of all 2 × 2 matrices with integers on
the main diagonal and 0’s on the transverse diagonal. Show that D2(Z) is a
commutative unital subring of N2(Z).

Exercise 1.4.7. Let T2(Z) be the set of all 2 × 2 matrices with integers on
the transverse diagonal and 0’s on the main diagonal. Show that T2(Z) is a
commutative non-unital subring of N2(Z).

Exercise 1.4.8. Let H = {(m,−m) : m ∈ S}. Show that H is a subgroup of
the additive group Z× Z but is not a subring of the ring Z× Z.

Let R = (R,+, ∗) be a ring and let S ⊆ R. We say that S is an ideal of R
provided S is a subgroup of (R,+); and, for all s ∈ S and all r ∈ R, we have
rs ∈ S and sr ∈ S.

Note that every ideal of a ring R is closed under the ring multiplication.
Consequently, since every ideal is assumed to be a subgroup under the addition,
it follows from Exercise 1.4.5 that every ideal of R is a subring of R. Ideals were
introduced early in ring theory as an aid to understanding prime factorizations
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(we will see how later in this course). They now play an indispensable role in
the general theory.

For each fixed integer n, the set nZ of all multiples of n forms an ideal of the
ring Z. However, although the integers form a subring of the ring Q of rational
numbers, it does not form an ideal. Likewise, the rational numbers do not form
an ideal in the reals, and the reals do not form an ideal in the ring of complex
numbers.

Exercise 1.4.9. Show that the set D2(Z) in Exercise 1.4.6 is not an ideal of
the ring N2(Z).

Exercise 1.4.10. Let I = {3a+ (1+ i
√
5)b : a, b ∈ Z[i

√
5]}. Show that I is an

ideal of the ring Z[i
√
5].

Exercise 1.4.11. Let R = (R,+, ·) be a ring and let I be an ideal of R. Prove
that I = R if and only if 1 ∈ I.

Exercise 1.4.12. Consider the ring N2(Z) and the set

I =

{(
a 0
b 0

)
: a, b ∈ Z

}
1. Show that I is a subring.

2. Show that I absorbs left multiplication; that is, show that BA ∈ I for all
A ∈ I.

3. Show that I does not absorb right multiplication and hence is not an ideal.
(This exercise shows that we must check both left and right absorption.)

Exercise 1.4.13. Let R = (R,+, ∗) be ring. We let I(R) denote the set of all
ideals of R. Find I(Z6).

Exercise 1.4.14. Find I(Z2 × Z2).

Exercise 1.4.15. Using either of the previous exercises, show by example that
the union of two ideals of a ring need not be an ideal.

We know that the union of two ideals in a ring R need not be an ideal of
R. However, under certain circumstances, unions of ideals do produce another
ideal.

Let R = (R,+, ∗) be a ring and let F ⊆ I(R) be nonempty. We say that F
is directed if, whenever F1, ..., Fn is a finite subcollection of F , there exists an
ideal U ∈ F such that Fj ⊆ U for 1 ≤ j ≤ n.
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Theorem 1.4.16. Let R = (R,+, ∗) be a ring. If D is a directed subset of
I(R), then the set

∪
D =

∪
{I : I ∈ D} is an ideal of R.

Proof. Since 0 ∈
∪

D, we know this set is nonempty. Closure under multipli-
cation is easy to obtain. Indeed, let a ∈

∪
D and let r ∈ R. We know there

exist I ∈ D such that a ∈ I. Since I is an ideal of R, we know that ar ∈ I and
ra ∈ I. Hence, ar ∈

∪
D and ra ∈

∪
D.

To complete the proof, we will need to show that a − b ∈
∪
D whenever

a, b ∈
∪
D. To this end, let a, b ∈

∪
D. It follows that there exist I, J ∈ D such

that a ∈ I and b ∈ J . Since D is directed, there exists an ideal K ∈ D such that
I ∪ J ⊆ K. Thus, a, b ∈ K, which implies that a− b ∈ K, since K is an ideal of
R. Consequently, we know that a− b ∈ D.

Exercise 1.4.17. Let R = (R,+, ∗) be a ring and let F be a family of subrings
of R. Show that

∩
F =

∩
{S : S ∈ F} is a subring of R. If every member of F

is an ideal, show that
∩

F is also an ideal.

Let R = (R,+, ∗) be a ring and let X ⊆ R. In light of the previous exercise,
the set

⟨X⟩ =
∩

{I ∈ I(R) : X ⊆ I}

is an ideal of R. We call this set the ideal generated by the set X. It is the
smallest ideal of R that contains X; that is, X ⊆ ⟨X⟩ and, whenever I is an
ideal such that X ⊆ I, then ⟨X⟩ ⊆ I as well. We say that a subset Y of an ideal
I generates the ideal provided I = ⟨Y ⟩ and refer to Y as a set of generators for
I. Every ideal has a set of generators, since I = ⟨I⟩.

Exercise 1.4.18. In a ring R, what is ⟨∅⟩?

Exercise 1.4.19. Let R = (R,+, ∗) be a ring and let I be an ideal of R. Let
Fin(I) denote the set of all finite subsets of I. Show that the set DI = {⟨F ⟩ :
F ∈ Fin(I)} is directed and that I =

∪
DI .

If I = ⟨F ⟩ for some finite set F , we say that I is finitely generated. If
I = ⟨{x}⟩, we say that I is principal. We usually write I = ⟨x⟩ when {x} is a
generating set for I.

Exercise 1.4.20. Let R = (R,+, ∗) be a ring and let F ∈ Fin(R). If D ⊆ I(R)
and ⟨F ⟩ ⊆

∪
D, show that there exist I ∈ D such that ⟨F ⟩ ⊆ I.

Exercise 1.4.21. Let R = (R,+, ∗) be a commutative ring, and let a ∈ R.

1. Show that ⟨a⟩ = {ar : r ∈ R}. Hint: Show that {ar : r ∈ R} is the
smallest ideal containing a.
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2. Show that this description of ⟨a⟩ can fail if R is not commutative.

Exercise 1.4.22. Let R = (R,+, ∗) be a commutative ring. Let F = {a1, ..., an} ⊆
R. Prove that

⟨F ⟩ = {a1r1 + ...+ anrn : r1, ..., rn ∈ R}

Exercise 1.4.23. Give an elementwise description of ⟨2⟩ in the ring 2Z.

Exercise 1.4.24. Give an elementwise description of ⟨A⟩ in the ring D2(Z) if

A =

(
2 0
0 2

)

Exercise 1.4.25. Every ideal of the ring Z2×Z2 is certainly finitely generated
(since this ring is finite). Does this ring contains ideals that are not principal?

Exercise 1.4.26. Let Z∞ be as defined in Exercise 1.3.6. For a ∈ Z∞, let
supp(a) be the set of all nonzero terms in a. Show that the set

I = {a ∈ Z∞ : supp(a) is finite}

is an ideal of Z∞ which is not finitely generated.

A ring in which every ideal is principal is called a principal ideal ring (or
PIR). In light of the previous exercises, we see that not every ring is a PIR. The
following theorem presents another example.

Theorem 1.4.27. The ring Z[i
√
5] is not a PIR.

Proof. We will show by way of counterexample that the ideal I described in
Exercise 1.4.10 is not principal. Suppose by way of contradiction that I = ⟨α⟩
for some α = 3a + b(1 + i

√
5). It is easy to see that both 3 and 1 + i

√
5 are

members of I. Thus, it must be true that there exist β, γ ∈ I such that

3 = βα 1 + i
√
5 = γα

Since |3|2 = 9 and |1 + i
√
5|2 = 6, it follows that |α|2 must divide both 9 and

6. Consequently, we know that |α| = 1, or |α| = 3. We will prove that neither
case is possible.

First, notice that, if we let a = m + in
√
5 and b = p + iq

√
5, then every

element of I has the form

(3m+ p− 5q) + i(3n+ p+ q)
√
5
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This representation tells us every element u + iv
√
5 ∈ I has the property that

u−v is divisible by 3. Consequently, we know that 1 ̸∈ I and −1 ̸∈ I. However,
these are the only two elements of Z[i

√
5] with modulus 1. Hence, we know that

|α| ̸= 1.

It follows that we must have |α| = 3. Hence, we must have

9 = |α|2 = (3m+ p− 5q)2 + 5(3n+ p+ q)2

This tells us that 9 = x2+5y2 for two numbers x and y such that x−y is divisible
by 3. Thus, there are only three possibilities — x = ±3 and y = 0, or x = 2 and
y = −1 or x = −2 and y = 1. If y = 0, then α = ±3. If this is the case, then
1+ i

√
5 = ±3γ for some γ ∈ I, which is clearly impossible. If x = 2 and y = −1,

then setting 3 = (u+ iv
√
5)(2− i

√
5) implies that 3 = 9v — an impossibility if

v is an integer. If x = −2 and y = 1, then setting 3 = (u + iv
√
5)(−2 + i

√
5)

implies that 3 = −9v — again a possibility if v is an integer.

We may now conclude that the element α does not exist. Hence, the ideal I
is not principal in Z[i

√
5].

Of course, we would not have introduced the term “PIR” if such rings do
not exist. The following result proves that there are such entities.

Theorem 1.4.28. The ring Z is a PIR.

Proof. Let I be an ideal of Z. We must find an integer a such that I = ⟨a⟩. If
I = {0}, there is nothing to show, so suppose that I contains nonzero elements.
Since I is a subgroup of (Z,+), it follows that I contains positive elements. Let
a be the smallest positive member of I. We will prove that a is a generator for I.
To this end, suppose that b ∈ I. By the division algorithm, there exist integers
q and r such that b = aq + r and 0 ≤ r < a. Since I is an ideal, we know that
aq ∈ I. Now, since r = b − aq, it follows that r ∈ I as well. Consequently, we
must have r = 0 (otherwise, I would contain a positive element strictly smaller
than a). Hence, b is an integer multiple of a. Therefore, we know that

I = {aq : q ∈ Z} = ⟨a⟩

As you can see, showing that a particular ideal is not principal can be a
daunting task. Sometimes, however, there are easier ways to determine whether
or not a given ring is a PIR, as the following result shows.

Let R be a ring and let C ⊆ I(R). We say that C is a chain if, whenever
I, J ∈ C, then either I ⊆ J , or J ⊆ I.

Exercise 1.4.29. Identify all chains of ideals in the ring Z2 × Z2.
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Let R be a ring and let C = {I1, I2, I3, ...} be a countable chain in I(R).
We say that C is ascending provided I1 ⊆ I2 ⊆ ... ⊆ In ⊆ .... We say that
R satisfies the ascending chain condition (or ACC) if every ascending chain in
I(R) is finite.

Let R be a ring and let C = {I1, I2, ..., In, ...} be an ascending chain of ideals
in R. If C is finite then there exists an ideal Im ∈ C such that Ij ⊆ Im for all j.
The ideal Im is said to be the largest member of C.

Exercise 1.4.30. Show that the ring Z∞ defined in Exercise 1.3.6 fails to satisfy
the ACC by finding an infinite ascending chain of principal ideals in Z∞.

Exercise 1.4.31. If R is a PIR, show that R satisfies the ACC. Hint: Note
that a nonempty chain C of ideals is directed; consider

∪
C.

Note that rings which satisfy ACC need not by PIR’s — just consider the
ring Z2 × Z2. Consequently, the converse of Exercise 1.4.31 is false.

1.5 Product and Quotient Rings

We have already encountered two examples of product rings, namely Z2 × Z2

and Z × Z. In both cases, the underlying set is the cartesian product of two
rings, and the operations are defined componentwise. We will now extend this
idea.

A set X is said to be indexed by a set I provided there exists a bijection
f : I −→ X. We call f an indexing of X by the set I, and we typically let xi

denote the element f(i) for each i ∈ I.

Let X = {Xi : i ∈ I} be a family of sets indexed by the set I. We define
the direct product of these sets to be the set of all mappings t : I −→

∪
X such

that t(i) ∈ Xi for each i ∈ I. We use the symbol
∏

i∈I Xi to denote this set of
mappings. The elements t(i) are called the coordinates of the mapping t.

If X = {X1, ..., Xn} is a finite collection of sets, then we can let the index
set be the cardinal number N = {1, ..., n}. In this case, a member t of

∏
i∈N Xi

can be identified with an ordered n-tuple (x1, ..., xn), where each xi = t(i).
Consequently, for finite families of sets, we identify the direct product with
the standard cartesian product. The previous discussion can be extended to
countably infinite direct products as well. Indeed, the set Z∞ of all sequences
of integers can be thought of as the direct product of countably many copies of
the set Z of integers.

Let R = {Ri : i ∈ I} be a family of rings indexed by a set I, where each
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Ri = (Ri,+i, ∗i). Let ∏
i∈I

Ri = (
∏
i∈I

Ri,⊕,⊗)

where t⊕s and t⊗s are defined by (t⊕s)(i) = t(i)+is(i) and (t⊗s)(i) = t(i)∗is(i)
for each i ∈ I. (That is, the operations are defined coordinate-wise on t and s.)

Exercise 1.5.1. Let R = {Ri : i ∈ I} be a family of rings indexed by a set I.

1. Show that
∏

i∈I Ri is a ring.

2. Show that
∏

i∈I Ri has unity if and only if each Ri has unity.

3. Show that t ∈
∏

i∈I Ri is a unit if and only if each t(i) is a unit in Ri.

4. Show that
∏

i∈I Ri is commutative if and only if each Ri is commutative.

The previous exercise shows that direct product rings inherit many impor-
tant properties from their factor rings. However, a direct product of integral
domains need not be an integral domain (consider the ring Z×Z). In particular,
an element of a direct product can be a zero-divisor when at least one of its
coordinates is not a zero-divisor in the corresponding factor ring.

Exercise 1.5.2. Let R = (R,+, ·) and S = (S,⊕,⊙) be rings. If I is an ideal
of R and J is an ideal of S, then prove that I × J is an ideal of R× S.

It is also possible in some circumstances to take a ring and “divide” it into a
family of “factor” rings. The process follows the methods used for constructing
quotient groups. Let R = (R,+, ·) be a ring and let S be a subring of R. We
know that (R,+) is a (commutative) group and that S is a (normal) subgroup
of (R,+). Hence, it makes sense to talk about the cosets generated by S in the
group (R,+). These sets will have the form

a+ S = {a+ s : s ∈ S} = S + a = {s+ a : s ∈ S}

where a ∈ R. We will let CS = {a + S : a ∈ R} denote the set of all cosets
generated by S. From group theory we already know a great deal about the
structure of CS . For example, we know that

• For all a ∈ R, we have a ∈ a+ S.

• We have a+ S = S if and only if a ∈ S.

• If b ∈ a+ S, then b+ S = a+ S.

• If b ̸∈ a+ S, then (a+ S) ∩ (b+ S) = ∅.

• There is a bijection between S and a+ S for all a ∈ R.
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Thus, the cosets of (R,+) form a collection of pairwise disjoint sets all of
which have the same cardinality as the original set S. Moreover, since S is
automatically normal in (R,+) (because (R,+) is commutative), we know that
we can make CS into a (commutative) group by defining

(a+ S)⊕ (b+ S) = (a+ b) + S

The identity of the group (CS ,⊕) will be the set S; the inverse of any coset a+S
will be the coset (−a) + S.

In group theory, we must have the subgroup S be normal in the group before
the relation⊕ defined above is actually a binary function. We would like to make
CS into a ring as well as a group — doing this will require us to use ideals, which
are the ring-theoretic analogs of normal subgroups.

Theorem 1.5.3. Let R = (R,+, ·) be a ring and let S be a subring of R. The
following statements are equivalent:

1. The set S is an ideal of R;

2. The binary relation ⊗ defined on CS by (a+ S)⊗ (b+ S) = (ab) + S is a
function.

3. The triple (CS ,⊕,⊗) is a ring.

Proof. We first prove that Claim 1 implies Claim 2. To this end, suppose that
a+S = c+S and b+S = d+S. We must show that (ab)+S = (cd)+S. It will
suffice to prove that cd ∈ ab+ S; that is, it will suffice to find some s ∈ S such
that cd = ab + s. Now, we know that there exist t, u ∈ S such that c = a + t
and d = b+ u. Consequently, we know that

cd = (a+ t)(b+ u) = ab+ tb+ au+ tu

Since S is assumed to be an ideal, we know that tb, au and tu are all members
of S. Hence, it follows that s = tb + au + tu ∈ S as well. Thus, we see that
cd = ab+ s, which implies that cd ∈ ab+ S, as desired.

We now prove that Claim 2 implies Claim 3. We already know that (CS ,⊕) is
a commutative group. It is easy to see that ⊗ as defined is associative. Indeed,
suppose that a, b, c ∈ R. Note that

[(a+ S)⊗ (b+ S)]⊗ (c+ S) = (ab+ S)⊗ (c+ S) = [(ab)c] + S

Now, we know that (ab)c = a(bc). Hence, since we are assuming that ⊗ is a
function, we know that (ab)c+ S = a(bc) + S. Since

a(bc) + S = (a+ S)⊗ ((bc) + S) = (a+ S)⊗ [(b+ S)⊗ (c+ S)]
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we have established that ⊗ is associative. It remains to prove that ⊗ distributes
over ⊕. Again, the fact that ⊗ is a function will be crucial. Let a, b, c ∈ R.
Observe that

(a+ S)⊗ [(b+ S)⊕ (c+ S)] = (a+ S)⊗ [(b+ c) + S] = (a(b+ c)) + S

Now, we know that a(b+ c) = ab+ ac. Hence, since ⊗ is a function, it follows
that (a(b+ c)) + S = (ab+ ac) + S. Since we know

(ab+ ac) + S = ((ab) + S)⊕ ((ac) + S)

we have established left distributivity. Right distributivity is verified in similar
fashion.

Finally, we will prove that Claim 3 implies Claim 1. To this end, suppose
that (CS ,⊕,⊗) is a ring. This certainly implies that ⊗ is binary function. Let
s ∈ S and let a ∈ R. We need only show that as ∈ S and that sa ∈ S. Note
that

(as) + S = (a+ S)⊗ (s+ S) = (a+ S)⊗ S = S

since S is the (additive) identity for the ring. Therefore, we see that as+S = S¡
which implies that as ∈ S, as desired. The proof that sa ∈ S is similar.

Let R = (R,+, ·) be a ring and let I be an ideal of R. The quotient ring
generated by I is the ring

R/I = (CI ,⊕,⊗)

of cosets generated by I.

Note that, in practice, quotient rings are constructed exactly the same way
we construct quotient groups — the whole process hinges on properly identifying
the cosets. The rest is simple.

Exercise 1.5.4. Consider the ring Z12.

1. Construct the ideal I = ⟨4⟩ in this ring.

2. Construct CI for this ideal.

3. Construct the addition and multiplication tables for the quotient ring
Z12/I.

Exercise 1.5.5. Consider the ring Z× Z. Let I = {(m, 0) : m ∈ Z}.

1. Show that I is an ideal.

2. Describe the cosets of I.
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3. Prove that the quotient (Z× Z)/I is an integral domain.

Exercise 1.5.6. Let p be a prime number and let T denote the set of all rational
numbers (in lowest terms) whose denominators are not divisible by p.

1. Prove that T is a ring under rational addition and multiplication.

2. Let I denote the subset of T whose numerators are multiples of p. Prove
that I is an ideal of (T,+, ·).

3. Determine the cosets of I in the ring (T,+·).

Exercise 1.5.7. Let R = (R,+, ·) and let I be an ideal of R. For a, b ∈ R, set
a ≡ b mod(I) if and only if a− b ∈ I.

1. Show that the relation ≡ is an equivalence relation on R.

2. Show that a+ I = b+ I if and only if a ≡ b mod(I).

Exercise 1.5.8. Let R = (R,+, ·) be any ring and let I be an ideal of R. Prove
the following statements.

1. If R is commutative, then R/I is commutative.

2. If R has a unity 1, then R/I has a unity, namely 1 + I.

Exercise 1.5.9. Let 3Z denote the ring of all integer multiples of 3 and let
I = 6Z.

1. Show that I is an ideal of 3Z.

2. Show that 3Z/I is a field.

3. Explain why the converse of Exercise 1.5.8 (2) is false.

Exercise 1.5.10. Let R = (R,+, ·) be a noncommutative ring and let I be an
ideal of R. Prove that R/I is commutative if and only if ab − ba ∈ I for all
a, b ∈ I.

Exercise 1.5.11. Let R = (R,+, ·) be a commutative ring and let I be an
ideal of R. Prove that R/I has a unity if and only if there exist ϵ ∈ R such that
ϵa− a ∈ I for all a ∈ R.

Exercise 1.5.12. Let R = (R,+, ·) be any ring and let I be a proper ideal of
R. Prove that the following statements are equivalent.
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1. The quotient R/I contains no zero-divisors.

2. Whenever a, b ∈ R are such that ab ∈ I, then either a ∈ I or b ∈ I.

Remember that I is considered to be the “zero” of the quotient.

Let R = (R,+, ·) be a ring. A proper ideal I of R is said to be prime
provided it satisfies the equivalent conditions in Exercise 1.5.12. Note that the
ideal I = {(m, 0) : m ∈ Z} is a prime ideal of Z × Z. It is generally easier to
check to the second condition when we want to verify that an ideal is prime, but
either condition may be used. The next result motivates our use of the term
“prime” when describing these ideals.

Theorem 1.5.13. A nontrivial ideal I of Z is prime if and only if I = ⟨p⟩ for
some prime p.

Proof. We already know that every ideal of Z is principal. Hence, we know
that I = ⟨n⟩ for some positive integer n. We must prove I is prime as an ideal
if and only if n is prime as an integer.

First, suppose that I is a prime ideal. Since I must be proper, it follows that
n ̸= 1. Suppose by way of contradiction that n = pq for some integers 1 < p < n
and 1 < q < n. Since we know that n ∈ I, it follows that pq ∈ I. Now, since
I is assumed to be prime, it follows that either p ∈ I or q ∈ I. However, since
I consists only of integer multiples of n, this is not possible. Hence, we must
conclude that n is prime.

Now, suppose that n is prime. We know that I = {kn : k ∈ Z}. Since n is
prime, we know that q ̸∈ I for any prime q ̸= n (since no such prime can be a
multiple of n). Hence, we know that I is proper. Suppose now that a, b ∈ Z
are such that ab ∈ I. It follows that ab = kn for some integer n; which implies
that n|(ab). Since n is prime, this tells us (by Euclid’s Lemma) that either n|a
or n|b. Therefore, we know that either a ∈ I or b ∈ I, as desired.

Exercise 1.5.14. Let R be a ring. What must be true if ⟨0⟩ is a prime ideal
in R?

Exercise 1.5.15. Show that I = ⟨(3, 0)⟩ is not a prime ideal in Z× Z.

Exercise 1.5.16. Show that I = {(0, a) : a ∈ Z3} is a prime ideal of Z2 × Z3.

Exercise 1.5.17. Suppose that R = (R,+, ·) is a commutative ring with unity
and suppose that I is an ideal of R. Prove that R/I is an integral domain if and
only if I is prime.
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Exercise 1.5.18. Let R = (R,+, ·) be a ring. An element a ∈ R is nilpotent
provided an = 0 for some positive integer n. If P is a prime ideal of R, prove
that P contains every nilpotent element of R. (The previous exercise is helpful.)

Exercise 1.5.19. Let R be a principal ideal domain (PID) and let I = ⟨p⟩ be
a prime ideal of R. If there exist c, d ∈ R such that p = cd, prove that one of c
or d is a unit. (This fact allows us to generalize the notion of “prime” to more
general rings.)

Let R = (R,+, ·) be a ring. A proper ideal I of R is maximal provided there
does not exist an ideal J such that I ⊂ J ⊂ R.

An ideal I in a ring R is maximal provided there is no ideal “between” it
and the whole ring. Sometimes we say that I is covered by R. A ring may
possess many maximal ideals. For example, in Z6, the ideals I = {0, 2, 4} and
J = {0, 3} are both maximal.

Exercise 1.5.20. Show that I = ⟨3⟩ is maximal in Z. Show that ⟨6⟩ is not
maximal in Z.

Exercise 1.5.21. Show that an ideal in Z is maximal if and only if it is prime.

Exercise 1.5.22. Find a prime ideal of Z× Z that is not maximal.

Theorem 1.5.23. Let R = (R,+, ·) be a commutative ring with unity. An ideal
M of R is maximal if and only if the quotient R/M is a field.

Proof. Suppose that R/M is a field. It follows that the unity 1 +M of R/M
cannot be equal to the identity M (since the identity of a ring cannot have a
multiplicative inverse). Consequently, we know that 1 ̸∈ M . It follows that M
is proper. Now, suppose that there exists an ideal J of R such that M ⊆ J ⊆ R.
We must prove that M = J or J = R. Suppose that M ̸= J . It follows that
there exist a ∈ J−M ; hence we know that a+M ̸= M . Consequently, we know
that a+M has a multiplicative inverse in R/M. Call this inverse b+M . This
tells us that (ab) + M = 1 + M , which in turn tells us that ab − 1 ∈ M (see
Exercise 1.5.7). Thus, we know that 1 = ab−m for some m ∈ M . Since m ∈ J
and a ∈ J by assumption, it follows that 1 ∈ J . This implies that J = R, as
desired (see Exercise 1.4.11).

On the other hand, suppose that M is maximal in R. We must show that
every non-identity element of R/M is a unit. To this end, suppose that a ̸∈ M
and consider the coset a+M . We must find a multiplicative inverse for a+M
in the quotient. First, observe that, since M is maximal, we know that M
is proper in R. Hence, we know by Exercise 1.4.11 that 1 ̸∈ M . Thus, we
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know that 1+M ̸= M ; and this coset clearly serves as the unity of the quotient.
Consequently, to find a multiplicative inverse for a+M , we must find an element
b ∈ R such that (ab) + M = 1 + M ; that is, we must find b ∈ R such that
1− ab ∈ M . Consider the set

J = {m+ ab : m ∈ M, b ∈ R}
Note that M ⊆ J by construction (just let b = 0). Furthermore, J is an ideal
of R. Indeed, J is certainly a subring since, for m,n ∈ M and b, c ∈ R, we have

(m+ ab)− (n+ ac) = (m− n) + a(b− c) ∈ J

since m − n ∈ M and b − c ∈ R. It is also easy to see that J is closed
multiplication. Indeed, if r ∈ R, note that

r(m+ ab) = (rm) + a(rb) ∈ J

since rm ∈ M and rb ∈ R. (Note that the commutativity of R is crucial here.)
Thus, since J is an ideal that contains M , it follows that J = R. This tells us
that 1 ∈ J (by Exercise 1.4.11). Thus, we know that there exist b ∈ R such that
1 = m+ ab. Consequently, we see that 1− ab ∈ M , as desired.

Exercise 1.5.24. Let 2Z denote the ring of even integers.

1. Show that M = 4Z is a maximal ideal in 2Z.

2. Show that 2Z/M is not a field. Why does this not contradict the previous
theorem?

1.6 Homomorphisms

We will conclude this chapter with a notion for rings that has a familiar analog
in groups — that of a ring homomorphism. Because ring homomorphisms share
much in common with group homomorphisms, much of this section will be
familiar.

Let R = (R,+, ·) and S = (S,⊕,⊙) be rings. A mapping f : R −→ S is called
a ring homomorphism provided f(a+b) = f(a)⊕f(b) and f(a ·b) = f(a)⊙f(b).
We say that f preserves the ring operations if this is the case.

A ring homomorphism that is one-to-one is called a monomorphism or an
embedding. A ring homomorphism that is onto is called an epimorphism. A
ring homomorphism that is a bijection is called an isomorphism. When there
is an isomorphism between two rings, we say that the rings are isomorphic.
Isomorphic rings, like isomorphic groups, are mathematically indistinguishable.
The following result is a direct analog of the corresponding result for groups.
We leave its proof as an exercise.
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Exercise 1.6.1. Let R = (R,+, ·) and S = (S,⊕,⊙) be rings and let f : R −→
S be a ring homomorphism. Then the following statements are true:

1. We have f(0R) = 0S .

2. For all a ∈ R, we have f(−a) = −f(a).

3. If T is a subring of R, then f(T ) = {f(t) : t ∈ T} is a subring of S.

4. If U is a subring of S, then T = {t ∈ R : f(t) ∈ U} is a subring of R.

5. If R has a unity 1, then f(1) is the unity of the subring f(R).

6. If R is commutative, then f(R) is commutative in S.

As an example, consider the mappings f : Z2×Z3 −→ Z6 and g : Z2×Z3 −→
Z6 defined by

f [(a, b)] = (3a+ 2b)mod(6) g[(a, b)] = (3a− 2b)mod(6)

Are either of these mappings ring homomorphisms? First, observe that both
preserve the ring addition. (We leave this as an exercise.) Thus, both are group
homomorphisms. (In fact, the mapping f is a group isomorphism.) However,
the mapping f does not preserve the ring multiplication. Observe that

f [(1, 2) ∗ (1, 1)] = f [(1, 2)] = (3 + 4)mod(6) = 1

f [(1, 2)] ∗ f [(1, 1)] = (3 + 4)mod(6) ∗ (3 + 2)mod(6) = 5

Thus, even though f is a group isomorphism, it is not a ring homomorphism.
On the other hand, the mapping g does preserve the ring multiplication. Indeed,

g[(a, b) ∗ (c, d)] = g[(ac, bd)]

= (3ac− 2bd)mod(6)

= (9ac− 6ad− 6bc+ 4bd)mod(6)

= (3a− 2b)mod(6) ∗ (3c− 2d)mod(6)

= g[(a, b)] ∗ g[(c, d)]

Note that we used the facts that 6ad ≡ 6bc ≡ 0 mod(6) and −2bd ≡ 4bd mod(6)
in the calculation above. Thus, g is a ring homomorphism. In fact, g is a ring
isomorphism.

Exercise 1.6.2. Consider the ring Z28.

1. Show that U = {0, 4, 8, 12, 16, 20, 24} is a subring of Z28.

2. Show that the mapping f : Z7 −→ Z28 defined by f(x) = 8x mod(28) is an
embedding with f(Z7) = U .
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Exercise 1.6.3. Let R = (R,+, ·) and S = (S,+, ∗) be rings. Show that R× S
is isomorphic to S× R.

Exercise 1.6.4. Let R = (R,+, ·) and S = (S,+, ∗) be rings. Show that the
mapping π1 : R× S −→ R defined by π1[(a, b)] = a is a ring epimorphism from
R × S to R. Maps which take a ring product to a fixed coordinate are called
projection homomorphisms.

Exercise 1.6.5. Let f : Z12 −→ Z4 be defined by f(x) = xmod(4).

1. Show that f is a ring epimorphism from Z12 to Z4.

2. Show that the set T = {a ∈ Z12 : f(a) = 0 mod(4)} is an ideal.

Exercise 1.6.6. Let R = (R,+, ·) and S = (S,+, ∗) be rings and let f : R −→ S
be a ring homomorphism. Show that the set ker(f) = {a ∈ R : f(a) = 0S} is
always an ideal of R. This set is called the kernel of f .

Exercise 1.6.7. Let R = (R,+, ·) and S = (S,+, ∗) be rings. Show that the
kernel of the projection homomorphism π1 : R × S −→ R defined in Exercise
1.6.4 is the set ker(f) = {(0R, s) : s ∈ S}.

Exercise 1.6.8. Let R = (R,+, ·) be any ring and let I be an ideal of R.

1. Show that the mapping νI : R −→ CI defined by νI(a) = a + I is an
epimorphism between R and R/I. This map is called the quotient homo-
morphism.

2. Show that ker(νI)) = I.

Exercise 1.6.9. Let R = (R,+, ·) be a ring with unity and let S = (S,⊕,⊙)
be a ring. Suppose that f : R −→ S be a homomorphism. If a ∈ R is a unit,
show that f(a) is a unit in f(R).

Exercise 1.6.10. Consider the mapping f : Z3 −→ Z6 defined by f(x) =
4x mod(6).

1. Show that f is a homomorphism between Z3 and Z6.

2. Show that f(2) is not a unit in Z6. Why does this not contradict Exercise
1.6.9?

Exercise 1.6.11. Let R = (R,+, ·) and S = (S,+, ∗) be rings and let f : R −→
S be a homomorphism. Show that f is one-to-one if and only if ker(f) = {0R}.
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We have already seen that ideals perform in rings much the same role as
normal subgroups play for groups. This analogy can be extended further, as
the following theorems show.

Corollary 1.6.12. Let R = (R,+·) be a ring. A subset I of R is an ideal of R
if and only if there exists a ring S = (S,⊕,⊗) and a homomorphism f : R −→ S
such that I = ker(f).

Proof. In light of Exercise 1.6.8, if I is an ideal of R, we need only consider
the quotient ring S = R/I and the quotient mapping νI : R −→ CI .

On the other hand, if I is the kernel of a homomorphism f , it follows from
Exercise 1.6.6 that I is an ideal of R.

Theorem 1.6.13. Let R = (R,+, ∗) and S = (S,⊕,⊙) be rings. If f : R −→ S
is an epimorphism, then there exists a unique isomorphism φ : CI −→ S such
that φ ◦ νI = f , where I = ker(f).

Proof. Every ring homomorphism is a group homomorphism. Consequently,
by the Fundamental Homomorphism Theorem for groups, we know there exists
a unique group isomorphism φ : CI −→ S defined by φ(a+ I) = f(a). We need
only prove that φ preserves the ring multiplication. To this end, suppose that
a+ I, b+ I ∈ CI . Observe that

φ((a+ I)⊗ (b+ I)) = φ((ab) + I) = f(ab) = f(a)⊙ f(b) = φ(a+ I)⊙ φ(b+ I)

The previous result is known as the Fundamental Homomorphism Theorem
for Rings. As an example of how this can be used, let n be a fixed positive
integer and consider the ideal nZ of Z. The mapping f : Z −→ Zn defined
by f(x) = x mod(n) is clearly a ring epimorphism. Moreover, the kernel of this
mapping is the ideal nZ. Hence, we know at once that the quotient Z/nZ is
isomorphic to Zn.

Exercise 1.6.14. Let R and S be rings.

1. Show that R can be embedded into R× S as an ideal.

2. Use the Fundamental Homomorphism Theorem to prove that (R × S)/R
is isomorphic to S.


