Example 1

Crew members attempt to escape from a damaged submarine that is submerged 100 m below the surface of the ocean. With what force must a crew member push on a pop-out hatch, which has an area of 1.2 m × 0.60 m, to begin to open it? Take the density of sea water to be 1024 kg/m³ and the pressure inside the submarine to be 1 atm.

\[P = P_{\text{top}} + \rho gh \]
\[P = \frac{F}{A} \]

\[F_{\text{inside}} = F_{\text{outside}} \]
\[P_{\text{inside}} A + F_{\text{push}} = P_{\text{outside}} A \]

\[F_{\text{push}} = P_{\text{outside}} A - P_{\text{inside}} A \]
\[= (P_{\text{top}} + \rho gh)A - P_{\text{inside}} A \]
\[= (1.01 \times 10^5 + 1024 \times 9.8 \times 100) \times 0.72 - 1.01 \times 10^5 \times 0.72 \]
\[= 7.23 \times 10^5 \text{ N} \]

\[\approx \text{approx. equivalent of 160,000 lb} \]
Example 2

A rectangular block of ice with dimensions $2.5 \text{ m} \times 1.7 \text{ m} \times 0.5 \text{ m}$ is floating in water. What is the height of the ice that is floating above the water line?

Data: density of water = 1000 kg/m^3, density of ice = 934 kg/m^3

$$d = ?$$

$$c = 0.5 \text{ m}$$
$$b = 1.7 \text{ m}$$
$$a = 2.5 \text{ m}$$

FBD for the ice block

$m_i = \text{mass of ice}$

$m_w = \text{mass of displaced water}$

$$V = ab(c-d)$$

$$\rho_w \left[ab(c-d) \right] = m_i$$

$$\rho_w \frac{ab(c-d)}{ab \rho_w} = m_i$$

$$c - d = \frac{m_i}{ab \rho_w}$$

$$d = c - \frac{m_i}{ab \rho_w}$$

$$d = \left[0.033 \text{ m} \right]$$
Example 3

A horizontal section of pipe with a cross-sectional area of 5.3 cm2 contains water flowing at 30 cm/s at a pressure of 2.3×10^5 Pa. The next section of the pipe is vertical, with a height of 2.3 m, which then connects with another horizontal section of pipe which has a cross-sectional area of 2.5 cm2.

(a) What is the speed of water flowing in the lower horizontal section of the pipe?

(b) What is the pressure of the water in the lower section? (Hint: Let $y = 0$ be at the level of the lower section of pipe.)

\[
\begin{align*}
A_1 &= 5.3 \text{ cm}^2 \times \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 = 0.00053 \text{ m}^2 \\
A_2 &= 2.5 \text{ cm}^2 \times \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 = 0.00025 \text{ m}^2 \\
v_1 &= 30 \text{ cm/s} = 0.3 \text{ m/s} \\
v_2 &= \ ? \\
h &= 2.3 \text{ m} \\
\rho &= 1000 \text{ kg/m}^3
\end{align*}
\]

(a) \[v_1 A_1 = v_2 A_2\]

\[v_2 = \frac{v_1 A_1}{A_2} = \frac{0.3 \text{ m/s}}{0.00025} = 0.64 \text{ m/s}\]

(b) \[P_1 + \frac{1}{2} \rho v_1^2 + p_1 g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + p_2 g y_2\]

\[P_2 = P_1 + \frac{1}{2} \rho v_1^2 + p_1 g h - \frac{1}{2} \rho v_2^2 = 2.5 \times 10^5 \text{ Pa}\]