Lé6: Blackbody Radiation

L6: Blackbody Radiation

We have so far discussed in geometrical optics how light behaves as a ray, and we have
discussed how, under certain conditions, light behaves as a wave. We now discuss the
fact that, under yet different circumstances, light definitely behaves as a particle. When
these particle characteristics of light were first discovered around the year 1900 they
started to shake the foundations of classical physics, since the physics accepted at that
time treated light solely as an electromagnetic wave. We therefore use the year 1900 as
the beginning of a new era of physics, called Modern Physics. We begin our study of
modern physics with a discussion of the topic that started it all — blackbody radiation.
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Blackbody Radiation |

As described by Maxwell, radiation, whether in the form of visible light or invisible
regions of the electromagnetic (EM) spectrum, can be described as an EM wave. These
EM waves carry energy with them as they propagate, so that (EM) radiation is one form
of energy transfer. (You may remember from your first-semester physics course that the
other forms are conduction, in which a warm object in contact with a cooler object
transfers energy to the cooler object, and convection, in which a bulk volume of higher-
energy content material is transported through lower-energy content material, such as
when warm air rises through surrounding cooler air.)

All objects emit radiation as a result of their temperature—the hotter they are, the more
radiation energy they emit per unit time. This emitted radiation consists of all of the
wavelengths in the EM spectrum (not just the visible region!). The various wavelengths
emitted by an object comprise what is called the emission spectrum of that object.

If we were to place a brick on a table (in a room with no windows) and turn off the
lights, we would not be able to see the brick. How can this be if the brick really emits
radiation at a/l/ wavelengths, including the visible region of the spectrum? The answer is
that the amount of energy emitted by the brick in the visible region of the spectrum is so
small that our eyes cannot detect it. If the brick were in thermodynamic equilibrium with
the room — that is, if it were at the same temperature as the room — then the majority of
the radiation that it would emit would be in the infrared region of the EM spectrum, a
region to which our eyes are not sensitive.

It is important to note that, if the brick were at the same temperature as the room (which
we assume remains at a constant temperature, and has no heating or cooling equipment
to stabilize its temperature), then we would not expect it to cool down or to heat up as it
sits on the table top (assuming that we didn’t have it in an oven or a refrigerator!). But if
it is constantly emitting radiation, which carries energy with it, then it should be
constantly losing energy and therefore cooling offl What is wrong here?!

If it 1s true that the brick emits radiation and therefore energy as a result of its
temperature, then the only way that the brick can remain in thermal equilibrium with the
room so that its temperature does not change is if it is also constantly absorbing energy
from its surroundings. (If you think about this from the point of view of the room, this
only makes sense. If the brick is constantly giving energy to the room in the form of EM
radiation, then the room should be heating up. But if it is staying at the same
temperature, it must somehow be getting rid of the extra energy — it is giving it back to
the brick!)

If an object is in thermal equilibrium with its surroundings, then it must be
constantly absorbing the same amount of energy that it is emitting.
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Blackbody Radiation Il

Let’s say that we were now to heat up the brick — maybe to a temperature of about 500 K
(remember that room temperature is about 300 K). In the dark room we would still not be
able to see the brick, but we would be able to feel it — we would feel its warmth even if we
were not touching it. This is of course a result of the greater intensity of infrared radiation
emitted by the brick as a result of its increased temperature. As the brick is heated more
and more, we would feel the increased heat that it would emit until eventually, when the
brick reaches a temperature of about /000 K, we would start being able to see the brick
glow with a dull red color. If the brick’s temperature were increased even further, we
would see it glow with a brighter red and then an orange-red color, until eventually, when
its temperature reaches about /700 K, the brick would glow with a “white-hot” color.
This color would be a result of the fact that, at this point, the brick is emitting a good bit of
radiation in all regions of the visible region of the spectrum, so the colors combine to
appear white to our eyes.

Again, if the temperature of the brick were to remain constant, then it must be absorbing
the same amount of energy as it is radiating. If we’ve been heating the brick on some sort
of heating coils, then the brick has been heated by conduction. Let’s say that we wish to
examine an object at a constant temperature which is heated solely by radiation, just as it
is constant trying to cool itself by radiating energy. In particular, let’s consider two closed
boxes, one colored a dull black and the other a shiny white. If we were to place both of
these boxes out in the direct sunlight and measure the temperatures inside the two boxes,
we would find that the black box reaches a higher equilibrium temperature than the white
box (ro surprise here!). This tells us two things. First, that the black box is absorbing
more radiation energy from the sun than the white box, and second (can you guess it?),
since the “equilibrium temperature” means that the boxes’ temperatures have reached a
constant (equilibrium) value, that the black box must be emitting more energy than the
white box! (More precisely, it’s really the rate of absorption and emission that must be the
same.) This means that the black box is a very efficient absorber and emitter of radiation.

Following this same reasoning, it follows that a perfect absorber of radiation would thus
be perfectly black (since a perfect absorber of radiation would not reflect any radiation
incident on it!). Such a perfect absorber is called a blackbody. From our discussion
above, it follows that this perfect absorber of radiation must also be a perfect emitter of
radiation!

Now wait a minute! An object which is a perfect absorber of radiation and sucks up any
radiation incident on it is called a blackbody because it would appear black. But if it is
also a perfect emitter of radiation, why would it still appear black? Shouldn’t it be
glowing with a brilliant irradiance?! Well, yes and no. Consider a good example of
something pretty close to a blackbody: your clothes closet with the door slightly ajar. You
stand about a meter away from the door to your closet with a flashlight. You shine the
flashlight onto the crack in the door; what do you see? What you will most likely see is
the outside of the door and the adjacent wall illuminated with the flashlight beam, but
inside the closet, through the very narrow crack in the door, you will still just see
darkness. The closet is absorbing just about all of the light from your flashlight that is
incident on it, and it is re-radiating it.
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So why don’t you see the flashlight beam shining back out through the crack in the door?
Because while the light incident on the door crack is primarily in the visible region of the
EM spectrum (which is, of course, why the flashlight is useful for us!), the perfect emitter
of radiation takes that energy and radiates it at all wavelengths, nof just in the visible.
This is what we mean by a “perfect emitter” of radiation—the radiation is perfectly
emitted throughout the entire EM spectrum! Thus, for objects at or near room
temperature, a blackbody will appear black, since most of the radiation is given off at
wavelengths which are not in the visible region of the spectrum. (We’ll have more on this
shortly.)

However, if the blackbody were at a higher temperature, then it might not appear black to
our eyes—indeed, it might glow “with a brilliant irradiance” if its temperature is high
enough! (The sun is a good example of this.) Therefore, when we say that the “perfect
absorber” appears perfectly black, what we mean is that, in reflected light, ablackbody
appears perfectly black. This does not mean that the blackbody does not give off any
radiation—quite the contrary, since it reflects absolutely none of the light incident on it,
and since it is a perfect emitter of radiation!

The emission spectrum of a blackbody was of particular interest to physicists in the late
1800's. Indeed, the interest grew as it became more and more apparent that the accepted
physics at the time was completely unable to satisfactorily explain the observed blackbody
spectrum. That all changed in the year /900 when Max Planck solved this perplexing
problem and began the era known as modern physics.
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The Blackbody Spectrum

We discussed in the previous section that a perfect absorber and emitter of radiation is
called a blackbody. The various wavelengths of EM radiation emitted by a blackbody
comprise the blackbody emission spectrum. Two examples of such a spectrum are shown
in Fig. 6.1.
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Figure 6.1

The two spectra (plural of spectrum) in the figure correspond to two blackbodies having
temperatures of 7, = 7000 K and T, = 5000 K, as labeled in the figure. The independent

variable (horizontal axis) is the wavelength A of the emitted radiation, and the dependent
variable is the infensity of radiation per unit wavelength interval, I ;. (Remember that

intensity is the energy per unit time per unit area: J/(s mz) = W/m?. Thus, 7, must have
MKS units of (W/m%)/m = W/m?.)
Note that the T, curve in Fig. 6.1 emits more radiation (per unit time per unit area)

throughout the entire spectrum than the 7, curve. This is of course a result of the fact that
T,>T,

Note that each curve in Fig. 6.1 rises from zero, reaches a maximum, and then gradually
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decreases (the two curves eventually reach zero again as A approaches infinity). Note also
that the higher-temperature (T ; = 7000 K) curve reaches a maximum at a Jower

wavelength than the lower-temperature curve. The wavelength at which the blackbody

spectrum reaches a maximum is denoted 4, ..

The classical physics of EM waves was completely unable to explain the emission
spectrum shown above. (This spectrum had been experimentally observed in /899 by the
two scientists Lummer and Pringsheim.) This was a great puzzle to physicists at the time,
as they considered themselves experts on waves and the energy associated with them.
(Indeed, they were experts in wave physics!) Since the EM radiation being absorbed and
re-emitted by a blackbody was just waves, there should be no difficulty explaining the
emission spectrum. So what was the problem?

The answer to the puzzle came toward the end of the year /900 when the physicist Max
Planck found the equation which correctly describes the blackbody emission spectrum:

27thc?
A’ | exp (—}E—J -1
AkT

In Eq. 6.1, T'is the temperature of the blackbody in degrees Kelvin, c is the speed of light
in a vacuum, ¢ = 3.0 x 10% m/s, k is a constant which had been determined previously from
thermodynamic studies called Boltzmann'’s constant (this is just the ideal gas constant per
mole), k= 1.38x 10~ 23 J/K, and h is a constant which Planck made up in his
determination of this equation, and is thus called Planck’s constant in his honor. (The

exponential function in Eq. (6.1), exp(x), is the same as the function €*.) By comparing the
theoretical curves with the experimental blackbody emission spectra, it is found that

L (A)= 6.1

h=6626x10%7.5. (6.2)

(Actually, Planck found the value 6.55 x 107 34 Js. The value given in Eq. 6.2 is the
currently accepted value of this constant.)
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The Einstein Relation

The amazing thing in Planck’s development of the blackbody emission spectrum equation
(6.1) was that he had to assume that the radiant energy (such as energy from light waves
or other EM radiation) could not come in any arbitrary amount as was required by the
wave description of EM radiation. Instead, Planck found that the radiant energy only
came in little, discrete packets of energy, called photons. The energy in each packet
depends on the wavelength of the radiation being considered, and is equal to

he
E—-—i— . (6.3

Since ¢ = Af for an EM wave, it follows that ¢/A = f, so that the energy of a photon of light
in Eq. (6.3) can also be written in the form

E=hf (6.4)

Actually, Planck hypothesized that the radiant energy inside a blackbody comes in
packets of energy E = hf only when they interact with the walls of the blackbody. It was
Albert Einstein who extended this idea and proposed that a// EM radiation comes in
energy packets, which he called “quanta of light” (later to be called photons) of energy E
=hf. For this reason, the photon-energy equation (6.4) is called the Einstein relation.
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Wien's Displacement Law

From Planck’s equation for the blackbody spectrum it is possible to obtain two important
relations that had been found earlier from thermodynamic arguments and are therefore
named for the scientists who first found them. (At the time when these laws were first
derived the blackbody spectrum could not yet be explained. It was therefore quite an
accomplishment for these scientists to obtain these laws. Once Planck’s equation for the
blackbody spectrum was known, however, it was a rather straightforward problem in
calculus to derive these laws.)

The first of these laws is called the Wien Displacement Law, and tells us how the value
of 4. changes (or is “displaced”’) as the temperature T (in Kelvin!) of the blackbody

changes:
Ao T=P (6.5)

where f=0.0029 K m is the Wien constant. Note that this law tells us that the
wavelength at which the blackbody spectrum has a maximum (that is, the wavelength at
which the intensity per unit wavelength interval has the greatest value) is inversely
proportional to the absolute temperature of the blackbody. (Therefore, if the temperature

is doubled, the value of A will be halved.)

‘max

It should be noted that Wilhelm Wien received the Nobel prize in physics in 1971 for
work associated with the displacement law, and Max Planck received the same prize in
1918 for his discovery of energy quanta (photons) associated with his derivation of the
blackbody spectrum equation.
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The Stefan-Boltzmann Law

The second important law associated with the blackbody emission spectrum and which
can be derived from Planck’s equation (6.1) using calculus is the Stefan-Boltzmann
Law, which tells us the fotal intensity of radiation emitted by the surface of the
blackbody at all wavelengths

> “total’

Ideal Blackbody Emmision : Lom = —I‘t:—‘iz— =oT* (6.6)

where o= 5.67x 1078 W/(mz K4) (“watts per meter-squared per Kelvin to the fourth”) is
called the Stefan-Boltzmann constant.

Since real objects emit radiation less efficiently than a blackbody at the same
temperature (since, by definition, a blackbody is an ideal emitter and absorber of
radiation!), we introduce a (unitless) term called the emissivity, cleverly denoted e. The
value of the emissivity e ranges from near 0 for an object which is a very poor emitter of
radiation (and thus a very poor absorber of radiation, such as a mirror), to a value near /
for a very good emitter of radiation (very close to a perfect blackbody, for which of
course e = /).

For a blackbody (an ideal absorber and
emitter of radiation), e = 1.

We thus write the Stefan-Boltzmann Law in the following form for a real object:
: . Eoa s
Real Object Emission : Lon = A =ecT . (6.7

In this equation we have explicitly shown that the total intensity is equal to the total

energy radiated at all wavelengths, £,  ,, divided by the exposed surface area of the

blackbody, A4, and the total time over which the emitted radiation is measured, 7.

See the tables of physical constants for values of the emissivities of various materials.
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Example 6.1

The sun radiates like a blackbody of radius 7.0 x 10 m at a temperature of about 5000

K. The earth has a radius of about 6.4 x 10 m and is at a distance of about 1.5 x 101
m from the sun. (a) At what wavelength is the sun’s emission the strongest? To what
color does this correspond? (b) How much energy is radiated by the sun at all
wavelengths each second? (c) The radiant energy leaving the sun moves out equally in
all directions. What is the intensity of the sun’s radiation when it reaches the earth’s
distance from the sun? (d) How much of the sun’s radiant energy at all wavelengths is
incident per second on the earth’s surface? (Be careful!) (e) If all of the energy in part
(d) were assumed to be in the form of EM radiation of wavelength equal to that in part
(a) (it’s not, but let’s just pretend for a minute...!), how many photons of light would be
incident on the earth’s surface each second due to the sun’s radiation?

Answers: (2) 580 nm  (b) 2.18 x 10261 (c) 770 W/im? (d) 9.9 x 10107 (e) 2.9 x 10%°

Zolution
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Solution to Example 6.1

The sun radiates like a blackbody of radius 7.0 x 108 m at a temperature of about
5000 K. The earth has a radius of about 6.4 x 10® m and is at a distance of about
1.5 x 101 m from the sun.

(a) At what wavelength is the sun’s emission the strongest? To what color does this
correspond?

We are given the following data:

Radius of the sun: R, =7.0x 103 m Temperature of the sun: T = 5000 K

Radius of the Earth: RE =6.4x10°m Earth-Sun distance: .DES =1.5x10!!
m

The wavelength at which emission of a blackbody is the strongest is given by the Wien
Displacement Law:

where the Wien constant is given by p=2.9x 10~ K m. Solving for the wavelength
above gives us that

_ -7
Kmax =58x 107" m.

This corresponds to approximately yellow light in the visible region of the spectrum.
(b) How much energy is radiated by the sun at all wavelengths each second?

The total amount of energy radiated by the blackbody in all directions each second is
related to the total intensity of emission of the entire surface area of a blackbody, Lotal

This is given by the Stephan-Boltzmann law, which states that
E
Tyotar = —22 = eoT*
total A1

where A is the total surface area of the blackbody, ¢ is the time interval for the emission, ¢
= 1 s, e is the emissivity of the object (this equals 7 for a blackbody), and o is the
Stephan-Boltzmann constant, ¢ = 5.67 x 10™8 W/(m2 K4).

The area of the blackbody is just the surface area of
the sun (assumed spherical), which is A = 47IR52 =

6.16 x 108 m2. We thus get, solving for the total
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emitted energy E,  , above,

E _ ,=218x10%].

total

(c) The radiant energy leaving the sun moves out equally in all directions. What is
the intensity of the sun’s radiation when it reaches the earth’s distance from the
sun?

We must be a bit careful of this part. You must make sure that you match the area
through which the energy is traveling with the proper energy. that is, whatever energy
you use in the equation for intensity, you must make sure that you get the correct area that
that amount of energy passes through. Let’s see how this works....

In part (b) we computed the total energy leaving the surface of the sun, E, ;. As this

energy moves out further and further away from the sun, it moves successively through a
series of spheres centered on the sun with larger and larger radii. (The sun’s energy
moves out equally in all directions, so it moves through successive spheres.) When the
sun’s radiation reaches the earth’s position, it is in the process of passing through the
surface of a sphere of radius equal to the distance from the sun to the earth, Dpq.




Sol6.1

Thus, for an energy equal to the fotal energy emitted by the sun in one second, E the

total’
area that that energy passes through is equal to the area of a sphere of radius Dpg: Apg =

4RDE82 =2.83x 102> m?. The intensity of the sun’s radiation at the earth’s position is
therefore

AES't m2 .

(d) How much of the sun’s radiant energy at all wavelengths is incident per second
on the earth’s surface? (Be careful!)

OK-—this one will get you! This is where we must be really careful of areas and
energies! We know the intensity of the sun’s radiation at the earth’s position. This
intensity is equal to I = E/(A t) for any energy E and corresponding area 4 and time z.

We are only interested in the energy incident on the earth’s surface per second (t = [ s).
Another way of stating this is that we are interested in the total energy removed from the
sun’s radiation due to the earth intercepting some of that radiation. This is the key to
many people’s confusion.... Consider the diagram below.

The main point here is that the energy removed from the sun’s radiation is the same as if
the earth were flat (like a coin) directly facing the sun. Think about it. Say you have a bare
light bulb in the middle of a small and otherwise dark room. You have a half-dollar and a
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ping-pong ball. (We are going to assume here that the radius of the half-dollar and the
radius of the ping-pong ball are about the same.) If you get close to the wall and hold up
the ping-pong ball (like the earth), you will see a circular shadow on the wall. The
shadow represents the energy that was removed from the bulb’s radiation by the ball.
Now let’s say that you remove the ball and hold up the coin (facing the bulb) in its place.
If the ball and the coin have the same radius, then the shadow on the wall will look
exactly the same as when the ball was present. This means that the area that we should
use in the intensity equation is not the area of half of a sphere (which after some thought
you would probably think you should use), but rather is simply the area of a circle (that is,
like the area of the coin blocking the bulb’s radiation). That is, we should use the area Ag

= nREz =1.3x 10% m2. We then get that the intensity at the earth’s position can be

written as

I _EtgtalE
g =2t
‘&"E -1

»

where E, ., i is the total energy removed from the sun’s radiation due to the presence of
the earth. We then get that

E

= — 16

(e) If all of the energy in part (d) were assumed to be in the form of EM radiation of
wavelength equal to that in part (a) (i7’s not, but let’s just pretend for a minute...!),
how many photons of light would be incident on the earth’s surface each second
due to the sun’s radiation?

We now assume that all of the radiation energy absorbed by the earth, E, | ¢, is in the
form of EM radiation of wavelength A = 5.8 x 107 m. The energy of a single photon of

this wavelength is given by the Einstein-Planck relation:

he -19
Ephoto:n = -1— = 343 XlO I

(Here / is Planck’s constant, h = 6.626 x 107341 s.) The total energy incident on the earth,
E, a1 - 18 Just equal to some number N of these photons times the energy in each of

these photons:

Etotal,E =N Ephoton :

Therefore,

_ EigtalE

=2.9x10% .
Ephoton
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Solution to Example 6.2

The tungsten filament in a 100 W light bulb has an area of about 0.26 em? and

reaches a temperature of about 3430 °C . Assuming that all /00 W goes into
radiant energy, find the emissivity of the tungsten filament.

Compared to the last example, this one is easy!

We know that the power of the light bulb is P = 100 W, and the area of the filament is A

=0.26 cm? = 0.26 x 107 m?. Also, the temperature of the filament reaches T = 3430 °C
= 3700 K (don’t forget—temperatures in Kelvin!). We wish to find the emissivity of the
filament.

The equation for the total intensity emitted by a radiating object is given by

| o

E
I, =ecT%=_— =
totel At

since the power is defined to be the energy per unit time (1 watt = 1 joule per second; !/ W
= [ J/s). We thus get that

P
6=

= =0.36.
oT A

That’s it!
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Sample Quiz 6

1. A good example of a blackbody is
a. a shiny black car b. a mirror. c. a deep red Christmas ball.
d. a closet with the door slightly ajar. ¢. the deep blue sky.
2. An object in thermal equilibrium with its surroundings must
a. have a black color.  b. emit as much radiation as it absorbs.  c. be at 300 K.
d. reflect the same color as its surroundings. €. refract light from its surroundings.

3. The higher the temperature of a blackbody, the

a. more radiation it emits. b. smaller it must be. c. more black it appears.
d. larger the radius of curvature. e. more it conducts energy.

4. The wavelength A . _stands for

a. the largest possible wavelength of radiation emitted by a blackbody.
b. the largest possible frequency of radiation emitted by a blackbody.
c. the wavelength at which the temperature of the blackbody is the largest.

d. the wavelength at which the intensity of radiation emitted by a blackbody is the
largest.

e. the wavelength of maximum wave speed in the emitted radiation.
5. Tomorrow we will have

a. another of our extremely simple-minded quizzes which do nothing but insult our
intelligence.

b. a HUGE activity. c. birthday cake. d. the same as (a).

e. our first test, for which we’ve been studying religiously.
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Answers to Sample Quiz 6
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Homework 6

1. A metal nugget is heated up in a furnace. As it gets hotter and hotter, it eventually
starts glowing with a red, and orange, and eventually with a yellow color. Estimate the
temperature of the nugget at each of these colors.

2. A blackbody has a temperature of 3,500 K and an exposed area of 7.9 em?. (2) At
what wavelength does the blackbody radiate the most intensely? (b) How much energy
is emitted by the blackbody at all wavelengths in one hour?

3. At what wavelength does the human body radiate most intensely? To what part of the
electromagnetic spectrum does this correspond?

4. A star has a radius of 8.5 x 10° m and acts like a blackbody of temperature 4,300 K.

A planet of radius 2.7 x 107 m orbits the star at a distance of 7.5 x 1011 m. (a) At what
wavelength is the star’s emission the strongest? What color would it appear? (b) What
is the intensity of radiation at all wavelengths leaving the star’s surface? (c) How much
energy leaves the star’s surface at all wavelengths each second? (d) How much energy
leaves the star’s surface in a time of one (Earth) year? (e) What is the intensity of
radiation emitted by the star at all wavelengths at the position of the star’s planet? (f) If
it takes this planet 3.7 earth-years to orbit its star once, then how much energy is
incident on the planet at all wavelengths during one orbital period, assuming that the
planet’s orbit is circular?

5. A small sphere of radius 15 em is at a temperature of 1500 K. In a time of 2.0 h

(hours) it emits a total energy of 1.73 x 108 J at all wavelengths. What is the emissivity
of the sphere?

Argwers
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Answers to Homework 6

1. 4,140 K (700 nm); 4,600 K (630 nm); 5,000 K (580 nm)

2.(2)829 nm (b)2.4x 1077

3.9,350 nm = 9.35 um  This is the infrared region of the electromagnetic spectrum.

4. (a) 670 nm; orange/red (b) 1.9 x 107 W/m* (c) 1.7x 10287 (d)5.4x10%7 (e)
2,400 W/m? (f) 6.4 x 1020 ]
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