Chapter 2

Review of Probability

2.6. The table shows that $\operatorname{Pr}(X=0, Y=0)=0.037, \operatorname{Pr}(X=0, Y=1)=0.622$,
$\operatorname{Pr}(X=1, Y=0)=0.009, \operatorname{Pr}(X=1, Y=1)=0.332, \operatorname{Pr}(X=0)=0.659, \operatorname{Pr}(X=1)=0.341$, $\operatorname{Pr}(Y=0)=0.046, \operatorname{Pr}(Y=1)=0.954$.
(a) $E(Y)=\mu_{Y}=0 \times \operatorname{Pr}(Y=0)+1 \times \operatorname{Pr}(Y=1)$

$$
=0 \times 0.046+1 \times 0.954=0.954
$$

(b) Unemployment Rate $=\frac{\#(\text { unemployed })}{\#(\text { labor force })}$

$$
=\operatorname{Pr}(Y=0)=1-\operatorname{Pr}(Y=1)=1-E(Y)=1-0.954=0.046
$$

(c) Calculate the conditional probabilities first:

$$
\begin{aligned}
& \operatorname{Pr}(Y=0 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=0)}{\operatorname{Pr}(X=0)}=\frac{0.037}{0.659}=0.056 \\
& \operatorname{Pr}(Y=1 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=1)}{\operatorname{Pr}(X=0)}=\frac{0.622}{0.659}=0.944 \\
& \operatorname{Pr}(Y=0 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(X=1)}=\frac{0.009}{0.341}=0.026 \\
& \operatorname{Pr}(Y=1 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=1)}{\operatorname{Pr}(X=1)}=\frac{0.332}{0.341}=0.974
\end{aligned}
$$

The conditional expectations are

$$
\begin{aligned}
E(Y \mid X=1) & =0 \times \operatorname{Pr}(Y=0 \mid X=1)+1 \times \operatorname{Pr}(Y=1 \mid X=1) \\
& =0 \times 0.026+1 \times 0.974=0.974 \\
E(Y \mid X=0) & =0 \times \operatorname{Pr}(Y=0 \mid X=0)+1 \times \operatorname{Pr}(Y=1 \mid X=0) \\
& =0 \times 0.056+1 \times 0.944=0.944
\end{aligned}
$$

(d) Use the solution to part (b),

Unemployment rate for college graduates $=1-E(Y \mid X=1)=1-0.974=0.026$
Unemployment rate for non-college graduates $=1-E(Y \mid X=0)=1-0.944=0.056$
(e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is

$$
\operatorname{Pr}(X=1 \mid Y=0)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(Y=0)}=\frac{0.009}{0.046}=0.196
$$

The probability that this worker is a non-college graduate is

$$
\operatorname{Pr}(X=0 \mid Y=0)=1-\operatorname{Pr}(X=1 \mid Y=0)=1-0.196=0.804 .
$$

(f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of x and y,

$$
\operatorname{Pr}(X=x \mid Y=y)=\operatorname{Pr}(X=x) .
$$

For example, from part (e) $\operatorname{Pr}(X=0 \mid Y=0)=0.804$, while from the table $\operatorname{Pr}(X=0)=0.659$.
2.7. Using obvious notation, $C=M+F$; thus $\mu_{C}=\mu_{M}+\mu_{F}$ and $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$. This implies
(a) $\mu_{C}=40+45=\$ 85,000$ per year.
(b) $\operatorname{corr}(M, F)=\frac{\operatorname{cov}(M, F)}{\sigma_{M} \sigma_{F}}$, so that $\operatorname{cov}(M, F)=\sigma_{M} \sigma_{F} \operatorname{corr}(M, F)$. Thus $\operatorname{cov}(M, F)=$ $12 \times 18 \times 0.80=172.80$, where the units are squared thousands of dollars per year.
(c) $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$, so that $\sigma_{C}^{2}=12^{2}+18^{2}+2 \times 172.80=813.60$, and $\sigma_{C}=\sqrt{813.60}=28.524$ thousand dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say $e=0.80$ Euros per dollar); each 1 dollar is therefore with e Euros. The mean is therefore $e \times \mu_{C}$ (in units of thousands of Euros per year), and the standard deviation is $e \times \sigma_{C}$ (in units of thousands of Euros per year). The correlation is unit-free, and is unchanged.
2.9.

		Value of \boldsymbol{Y}				Probability	
		$\mathbf{1 4}$	$\mathbf{2 2}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 5}$	\boldsymbol{D}
Distribution of							

(a) The probability distribution is given in the table above.

$$
\begin{aligned}
E(Y) & =14 \times 0.21+22 \times 0.23+30 \times 0.30+40 \times 0.15+65 \times 0.11=30.15 \\
E\left(Y^{2}\right) & =14^{2} \times 0.21+22^{2} \times 0.23+30^{2} \times 0.30+40^{2} \times 0.15+65^{2} \times 0.11=1127.23 \\
\operatorname{var}(Y) & =E\left(Y^{2}\right)-[E(Y)]^{2}=218.21 \\
\sigma_{Y} & =14.77
\end{aligned}
$$

(b) The conditional probability of $Y \mid X=8$ is given in the table below

Value of \boldsymbol{Y}				
14	22	30	40	65
$0.02 / 0.39$	$0.03 / 0.39$	$0.15 / 0.39$	$0.10 / 0.39$	$0.09 / 0.39$

$$
\begin{aligned}
& E(Y \mid X=8)= 14 \times(0.02 / 0.39)+22 \times(0.03 / 0.39)+30 \times(0.15 / 0.39) \\
&+40 \times(0.10 / 0.39)+65 \times(0.09 / 0.39)=39.21 \\
& E\left(Y^{2} \mid X=8\right)= 14^{2} \times(0.02 / 0.39)+22^{2} \times(0.03 / 0.39)+30^{2} \times(0.15 / 0.39) \\
&+40^{2} \times(0.10 / 0.39)+65^{2} \times(0.09 / 0.39)=1778.7 \\
& \operatorname{var}(Y)=1778.7-39.21^{2}=241.65 \\
& \sigma_{Y \mid X=8}=15.54
\end{aligned}
$$

(c) $E(X Y)=(1 \times 14 \times 0.02)+(1 \times 22: 0.05)+\cdots+(8 \times 65 \times 0.09)=171.7$

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
\operatorname{corr}(X, Y) & =\operatorname{cov}(X 1.7-5.33 \times 30.15=11.0 \\
\left(\sigma_{X} \sigma_{Y}\right) & =11.0 /(2.60 \times 14.77)=0.286
\end{aligned}
$$

2.10. Using the fact that if $Y \square N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then $\frac{Y-\mu_{Y}}{\sigma_{Y}} \sim N(0,1)$ and Appendix Table 1, we have
(a) $\operatorname{Pr}(Y \leq 3)=\operatorname{Pr}\left(\frac{Y-1}{2} \leq \frac{3-1}{2}\right)=\Phi(1)=0.8413$.
(b) $\operatorname{Pr}(Y>0)=1-\operatorname{Pr}(Y \leq 0)=1-\operatorname{Pr}\left(\frac{Y-3}{3} \leq \frac{0-3}{3}\right)$

$$
=1-\Phi(-1)=\Phi(1)=0.8413 .
$$

(c) $\operatorname{Pr}(40 \leq Y \leq 52)=\operatorname{Pr}\left(\frac{40-50}{5} \leq \frac{Y-50}{5} \leq \frac{52-50}{5}\right)$

$$
\begin{aligned}
& =\Phi(0.4)-\Phi(-2)=\Phi(0.4)-[1-\Phi(2)] \\
& =0.6554-1+0.9772=0.6326 .
\end{aligned}
$$

(d) $\operatorname{Pr}(6 \leq Y \leq 8)=\operatorname{Pr}\left(\frac{6-5}{\sqrt{2}} \leq \frac{Y-5}{\sqrt{2}} \leq \frac{8-5}{\sqrt{2}}\right)$

$$
\begin{aligned}
& =\Phi(2.1213)-\Phi(0.7071) \\
& =0.9831-0.7602=0.2229 .
\end{aligned}
$$

2.14. The central limit theorem suggests that when the sample size (n) is large, the distribution of the sample average (\bar{Y}) is approximately $N\left(\mu_{Y}, \sigma_{\bar{Y}}^{2}\right)$ with $\sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}$. Given $\mu_{Y}=100, \sigma_{Y}^{2}=43.0$,
(a) $n=100, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{43}{100}=0.43$, and

$$
\operatorname{Pr}(\bar{Y} \leq 101)=\operatorname{Pr}\left(\frac{\bar{Y}-100}{\sqrt{0.43}} \leq \frac{101-100}{\sqrt{0.43}}\right) \approx \Phi(1.525)=0.9364 .
$$

(b) $n=165, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{43}{165}=0.2606$, and

$$
\begin{aligned}
& \operatorname{Pr}(\bar{Y}>98)=1-\operatorname{Pr}(\bar{Y} \leq 98)=1-\operatorname{Pr}\left(\frac{\bar{Y}-100}{\sqrt{0.2606}} \leq \frac{98-100}{\sqrt{0.2606}}\right) \\
& \approx 1-\Phi(-3.9178)=\Phi(3.9178)=1.000 \text { (rounded to four decimal places). }
\end{aligned}
$$

(c) $n=64, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{64}=\frac{43}{64}=0.6719$, and

$$
\begin{aligned}
\operatorname{Pr}(101 \leq \bar{Y} \leq 103) & =\operatorname{Pr}\left(\frac{101-100}{\sqrt{0.6719}} \leq \frac{\bar{Y}-100}{\sqrt{0.6719}} \leq \frac{103-100}{\sqrt{0.6719}}\right) \\
& \approx \Phi(3.6599)-\Phi(1.2200)=0.9999-0.8888=0.1111 .
\end{aligned}
$$

2.17. $\mu_{Y}=0.4$ and $\sigma_{Y}^{2}=0.4 \times 0.6=0.24$
(a) (i) $P(\bar{Y} \geq 0.43)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq \frac{0.43-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq 0.6124\right)=0.27$
(ii) $P(\bar{Y} \leq 0.37)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq \frac{0.37-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq-1.22\right)=0.11$
(b) We know $\operatorname{Pr}(-1.96 \leq Z \leq 1.96)=0.95$, thus we want n to satisfy $0.41=\frac{0.41-0.40}{\sqrt{24 / n}}>-1.96$ and $\frac{0.39-0.40}{\sqrt{24 / n}}<-1.96$. Solving these inequalities yields $n \geq 9220$.
2.18. $\operatorname{Pr}(Y=\$ 0)=0.95, \operatorname{Pr}(Y=\$ 20000)=0.05$.
(a) The mean of Y is

$$
\mu_{Y}=0 \times \operatorname{Pr}(Y=\$ 0)+20,000 \times \operatorname{Pr}(Y=\$ 20000)=\$ 1000 .
$$

The variance of Y is

$$
\begin{aligned}
\sigma_{Y}^{2} & =E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =(0-1000)^{2} \times \operatorname{Pr}(Y=0)+(20000-1000)^{2} \times \operatorname{Pr}(Y=20000) \\
& =(-1000)^{2} \times 0.95+19000^{2} \times 0.05=1.9 \times 10^{7},
\end{aligned}
$$

so the standard deviation of Y is $\sigma_{Y}=\left(1.9 \times 10^{7}\right)^{\frac{1}{2}}=\$ 4359$.
(b) (i) $E(\bar{Y})=\mu_{Y}=\$ 1000, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{1.9 \times 10^{7}}{100}=1.9 \times 10^{5}$.
(ii) Using the central limit theorem,

$$
\begin{aligned}
\operatorname{Pr}(\bar{Y}>2000) & =1-\operatorname{Pr}(\bar{Y} \leq 2000) \\
& =1-\operatorname{Pr}\left(\frac{\bar{Y}-1000}{\sqrt{1.9 \times 10^{5}}} \leq \frac{2,000-1,000}{\sqrt{1.9 \times 10^{5}}}\right) \\
& \approx 1-\Phi(2.2942)=1-0.9891=0.0109 .
\end{aligned}
$$

