Chapter 5
 Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

5.1 (a) The 95% confidence interval for β_{1} is $\{-5.82 \pm 1.96 \times 2.21\}$, that is $-10.152 \leq \beta_{1} \leq-1.4884$.
(b) Calculate the t-statistic:

$$
t^{a c t}=\frac{\hat{\beta}_{1}-0}{\operatorname{SE}\left(\hat{\beta}_{1}\right)}=\frac{-5.82}{2.21}=-2.6335 .
$$

The p-value for the test $H_{0}: \beta_{1}=0$ vs. $H_{1}: \beta_{1} \neq 0$ is

$$
p \text {-value }=2 \Phi\left(-\left|t^{a c t}\right|\right)=2 \Phi(-2.6335)=2 \times 0.0042=0.0084
$$

The p-value is less than 0.01 , so we can reject the null hypothesis at the 5% significance level, and also at the 1% significance level.
(c) The t-statistic is

$$
t^{a c t}=\frac{\hat{\beta}_{1}-(-5.6)}{\operatorname{SE}\left(\hat{\beta}_{1}\right)}=\frac{0.22}{2.21}=0.10
$$

The p-value for the test $H_{0}: \beta_{1}=-5.6$ vs. $H_{1}: \beta_{1} \neq-5.6$ is

$$
p \text {-value }=2 \Phi\left(-\left|t^{a c t}\right|\right)=2 \Phi(-0.10)=0.92
$$

The p-value is larger than 0.10 , so we cannot reject the null hypothesis at the $10 \%, 5 \%$ or 1% significance level. Because $\beta_{1}=-5.6$ is not rejected at the 5% level, this value is contained in the 95% confidence interval.
(d) The 99% confidence interval for β_{0} is $\{520.4 \pm 2.58 \times 20.4\}$, that is, $467.7 \leq \beta_{0} \leq 573.0$.
5.2. (a) The estimated gender gap equals $\$ 2.12 /$ hour.
(b) The null and alternative hypotheses are $H_{0}: \beta_{1}=0$ vs. $H_{1}: \beta_{1} \neq 0$. The t-statistic is

$$
t^{a c t}=\frac{\hat{\beta}_{1}-0}{S E\left(\hat{\beta}_{1}\right)}=\frac{2.12}{0.36}=5.89,
$$

and the p-value for the test is

$$
p \text {-value }=2 \Phi\left(-\left|t^{a c t}\right|\right)=2 \Phi(-5.89)=2 \times 0.0000=0.000 \text { (to four decimal places) }
$$

The p-value is less than 0.01 , so we can reject the null hypothesis that there is no gender gap at a 1% significance level.
(c) The 95% confidence interval for the gender gap β_{1} is $\{2.12 \pm 1.96 \times 0.36\}$, that is, $1.41 \leq \beta_{1} \leq 2.83$.
(d) The sample average wage of women is $\hat{\beta}_{0}=\$ 12.52 / \mathrm{hour}$. The sample average wage of men is $\hat{\beta}_{0}+\hat{\beta}_{1}=\$ 12.52+\$ 2.12=\$ 14.64 /$ hour.
(e) The binary variable regression model relating wages to gender can be written as either

$$
\text { Wage }=\beta_{0}+\beta_{1} \text { Male }+u_{i} \text {, }
$$

or

$$
\text { Wage }=\gamma_{0}+\gamma_{1} \text { Female }+v_{i} .
$$

In the first regression equation, Male equals 1 for men and 0 for women; β_{0} is the population mean of wages for women and $\beta_{0}+\beta_{1}$ is the population mean of wages for men. In the second regression equation, Female equals 1 for women and 0 for men; γ_{0} is the population mean of wages for men and $\gamma_{0}+\gamma_{1}$ is the population mean of wages for women. We have the following relationship for the coefficients in the two regression equations:

$$
\begin{aligned}
& \gamma_{0}=\beta_{0}+\beta_{1}, \\
& \gamma_{0}+\gamma_{1}=\beta_{0} .
\end{aligned}
$$

Given the coefficient estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we have

$$
\begin{aligned}
& \hat{\gamma}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1}=14.64, \\
& \hat{\gamma}_{1}=\hat{\beta}_{0}-\hat{\gamma}_{0}=-\hat{\beta}_{1}=-2.12 .
\end{aligned}
$$

Due to the relationship among coefficient estimates, for each individual observation, the OLS residual is the same under the two regression equations: $\hat{u}_{i}=\hat{v}_{i}$. Thus the sum of squared residuals, $\operatorname{SSR}=\sum_{i=1}^{n} \hat{u}_{i}^{2}$, is the same under the two regressions. This implies that both
$S E R=\left(\frac{S S R}{n-1}\right)^{1 / 2}$ and $R^{2}=1-\frac{S S R}{T S S}$ are unchanged.
In summary, in regressing Wages on Female, we will get

$$
\text { Wages }=14.64-2.12 \text { Female }, \quad R^{2}=0.06, \quad S E R=4.2 \text {. }
$$

5.3. The 99% confidence interval is $1.5 \times\{3.94 \pm 2.58 \times 0.31)$ or $4.71 \mathrm{lbs} \leq$ WeightGain $\leq 7.11 \mathrm{lbs}$.
5.4. (a) $-5.38+1.76 \times 16-\$ 22.78$ per hour
(b) The wage is expected to increase by $1.76 \times 2=\$ 3.52$ per hour.
(c) The increase in wages for college education is $\beta_{1} \times 4$. Thus, the counselor's assertion is that $\beta_{1}=10 / 4=2.50$. The t-statistic for this null hypothesis is $t^{a c t}=\frac{1.76-2.50}{0.08}-9.25$, which has a p-value of 0.00 . Thus, the counselor's assertion can be rejected at the 1% significance level. A 95% confidence for $\beta_{1} \times 4$ is $4 \times(1.76 \pm 1.96 \times 0.08)$ or $\$ 6.41 \leq$ Gain $\leq \$ 7.67$.
5.5 (a) The estimated gain from being in a small class is 13.9 points. This is equal to approximately $1 / 5$ of the standard deviation in test scores, a moderate increase.
(b) The t-statistic is $t^{a c t}=\frac{13.9}{2.5}=5.56$, which has a p-value of 0.00 . Thus the null hypothesis is rejected at the 5% (and 1%) level.
(c) $13.9 \pm 2.58 \times 2.5=13.9 \pm 6.45$.
5.7. (a) The t-statistic is $\frac{3.2}{1.5}=2.13$ with a p-value of 0.03 ; since the p-value is less than 0.05 , the null hypothesis is rejected at the 5% level.
(b) $3.2 \pm 1.96 \times 1.5=3.2 \pm 2.94$
(c) Yes. If Y and X are independent, then $\beta_{1}=0$; but this null hypothesis was rejected at the 5% level in part (a).
(d) β_{1} would be rejected at the 5% level in 5% of the samples; 95% of the confidence intervals would contain the value $\beta_{1}=0$.
5.8. (a) $43.2 \pm 2.05 \times 10.2$ or 43.2 ± 20.91, where 2.05 is the 5% two-sided critical value from the t_{28} distribution.
(b) The t-statistic is $t^{a c t}=\frac{61.5-55}{7.4}=0.88$, which is less (in absolute value) than the critical value of 20.5. Thus, the null hypothesis is not rejected at the 5% level.
(c) The one sided 5% critical value is $1.70 ; t^{\text {act }}$ is less than this critical value, so that the null hypothesis is not rejected at the 5% level.

