Chapter 5

Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals

- 5.1 (a) The 95% confidence interval for β_1 is $\{-5.82 \pm 1.96 \times 2.21\}$, that is $-10.152 \le \beta_1 \le -1.4884$.
 - (b) Calculate the *t*-statistic:

$$t^{act} = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)} = \frac{-5.82}{2.21} = -2.6335.$$

The *p*-value for the test $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$ is

$$p$$
-value = $2\Phi(-|t^{act}|) = 2\Phi(-2.6335) = 2 \times 0.0042 = 0.0084$.

The *p*-value is less than 0.01, so we can reject the null hypothesis at the 5% significance level, and also at the 1% significance level.

(c) The t-statistic is

$$t^{act} = \frac{\hat{\beta}_1 - (-5.6)}{\text{SE}(\hat{\beta}_1)} = \frac{0.22}{2.21} = 0.10$$

The *p*-value for the test $H_0: \beta_1 = -5.6$ vs. $H_1: \beta_1 \neq -5.6$ is

$$p$$
-value = $2\Phi(-|t^{act}|) = 2\Phi(-0.10) = 0.92$

The *p*-value is larger than 0.10, so we cannot reject the null hypothesis at the 10%, 5% or 1% significance level. Because $\beta_1 = -5.6$ is not rejected at the 5% level, this value is contained in the 95% confidence interval.

- (d) The 99% confidence interval for β_0 is $\{520.4 \pm 2.58 \times 20.4\}$, that is, $467.7 \le \beta_0 \le 573.0$.
- 5.2. (a) The estimated gender gap equals \$2.12/hour.
 - (b) The null and alternative hypotheses are $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$. The *t*-statistic is

$$t^{act} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{2.12}{0.36} = 5.89,$$

and the p-value for the test is

$$p$$
-value = $2\Phi(-|t^{act}|) = 2\Phi(-5.89) = 2 \times 0.0000 = 0.000$ (to four decimal places)

The *p*-value is less than 0.01, so we can reject the null hypothesis that there is no gender gap at a 1% significance level.

- (c) The 95% confidence interval for the gender gap β_1 is $\{2.12\pm1.96\times0.36\}$, that is, $1.41 \le \beta_1 \le 2.83$.
- (d) The sample average wage of women is $\hat{\beta}_0 = \$12.52$ /hour. The sample average wage of men is $\hat{\beta}_0 + \hat{\beta}_1 = \$12.52 + \$2.12 = \14.64 /hour.
- (e) The binary variable regression model relating wages to gender can be written as either

$$Wage = \beta_0 + \beta_1 Male + u_i$$

or

$$Wage = \gamma_0 + \gamma_1 Female + v_i$$
.

In the first regression equation, *Male* equals 1 for men and 0 for women; β_0 is the population mean of wages for women and $\beta_0 + \beta_1$ is the population mean of wages for men. In the second regression equation, *Female* equals 1 for women and 0 for men; γ_0 is the population mean of wages for men and $\gamma_0 + \gamma_1$ is the population mean of wages for women. We have the following relationship for the coefficients in the two regression equations:

$$\gamma_0 = \beta_0 + \beta_1,$$

$$\gamma_0 + \gamma_1 = \beta_0.$$

Given the coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, we have

$$\hat{\gamma}_0 = \hat{\beta}_0 + \hat{\beta}_1 = 14.64,$$

$$\hat{\gamma}_1 = \hat{\beta}_0 - \hat{\gamma}_0 = -\hat{\beta}_1 = -2.12.$$

Due to the relationship among coefficient estimates, for each individual observation, the OLS residual is the same under the two regression equations: $\hat{u}_i = \hat{v}_i$. Thus the sum of squared residuals, $SSR = \sum_{i=1}^{n} \hat{u}_i^2$, is the same under the two regressions. This implies that both

$$SER = \left(\frac{SSR}{n-1}\right)^{1/2}$$
 and $R^2 = 1 - \frac{SSR}{TSS}$ are unchanged.

In summary, in regressing Wages on Female, we will get

Wages =
$$14.64 - 2.12$$
Female, $R^2 = 0.06$, $SER = 4.2$.

- 5.3. The 99% confidence interval is $1.5 \times \{3.94 \pm 2.58 \times 0.31\}$ or 4.71 lbs \leq WeightGain \leq 7.11 lbs.
- 5.4. (a) $-5.38 + 1.76 \times 16 22.78 per hour
 - (b) The wage is expected to increase by $1.76 \times 2 = \$3.52$ per hour.

- (c) The increase in wages for college education is $\beta_1 \times 4$. Thus, the counselor's assertion is that $\beta_1 = 10/4 = 2.50$. The *t*-statistic for this null hypothesis is $t^{act} = \frac{1.76 2.50}{0.08} 9.25$, which has a *p*-value of 0.00. Thus, the counselor's assertion can be rejected at the 1% significance level. A 95% confidence for $\beta_1 \times 4$ is $4 \times (1.76 \pm 1.96 \times 0.08)$ or $\$6.41 \le \text{Gain} \le \7.67 .
- 5.5 (a) The estimated gain from being in a small class is 13.9 points. This is equal to approximately 1/5 of the standard deviation in test scores, a moderate increase.
 - (b) The *t*-statistic is $t^{act} = \frac{13.9}{2.5} = 5.56$, which has a *p*-value of 0.00. Thus the null hypothesis is rejected at the 5% (and 1%) level.
 - (c) $13.9 \pm 2.58 \times 2.5 = 13.9 \pm 6.45$.
- 5.7. (a) The *t*-statistic is $\frac{3.2}{1.5} = 2.13$ with a *p*-value of 0.03; since the *p*-value is less than 0.05, the null hypothesis is rejected at the 5% level.
 - (b) $3.2 \pm 1.96 \times 1.5 = 3.2 \pm 2.94$
 - (c) Yes. If Y and X are independent, then $\beta_1 = 0$; but this null hypothesis was rejected at the 5% level in part (a).
 - (d) β_1 would be rejected at the 5% level in 5% of the samples; 95% of the confidence intervals would contain the value $\beta_1 = 0$.
- 5.8. (a) $43.2 \pm 2.05 \times 10.2$ or 43.2 ± 20.91 , where 2.05 is the 5% two-sided critical value from the t_{28} distribution.
 - (b) The *t*-statistic is $t^{act} = \frac{61.5-55}{7.4} = 0.88$, which is less (in absolute value) than the critical value of 20.5. Thus, the null hypothesis is not rejected at the 5% level.
 - (c) The one sided 5% critical value is 1.70; t^{act} is less than this critical value, so that the null hypothesis is not rejected at the 5% level.