Chapter 6

Linear Regression with Multiple Regressors

6.1. By equation (6.15) in the text, we know

$$
\bar{R}^{2}=1-\frac{n-1}{n-k-1}\left(1-R^{2}\right) .
$$

Thus, that values of \bar{R}^{2} are $0.175,0.189$, and 0.193 for columns (1)-(3).
6.3. (a) On average, a worker earns $\$ 0.29 /$ hour more for each year he ages.
(b) Sally's earnings prediction is $4.40+5.48 \times 1-2.62 \times 1+0.29 \times 29=15.67$ dollars per hour.

Betsy's earnings prediction is $4.40+5.48 \times 1-2.62 \times 1+0.29 \times 34=17.12$ dollars per hour.
The difference is 1.45
6.4. (a) Workers in the Northeast earn $\$ 0.69$ more per hour than workers in the West, on average, controlling for other variables in the regression. Workers in the Northeast earn $\$ 0.60$ more per hour than workers in the West, on average, controlling for other variables in the regression. Workers in the South earn $\$ 0.27$ less than workers in the West.
(b) The regressor West is omitted to avoid perfect multicollinearity. If West is included, then the intercept can be written as a perfect linear function of the four regional regressors.
(c) The expected difference in earnings between Juanita and Jennifer is $-0.27-0.6=-0.87$.
6.5. (a) $\$ 23,400$ (recall that Price is measured in $\$ 1000 \mathrm{~s}$).
(b) In this case $\Delta B D R=1$ and ΔH size $=100$. The resulting expected change in price is $23.4+$ $0.156 \times 100=39.0$ thousand dollars or $\$ 39,000$.
(c) The loss is $\$ 48,800$.
(d) From the text $\bar{R}^{2}=1-\frac{n-1}{n-k-1}\left(1-R^{2}\right)$, so $R^{2}=1-\frac{n-k-1}{n-1}\left(1-\bar{R}^{2}\right)$, thus, $R^{2}=0.727$.

