Chapter 7

Hypothesis Tests and Confidence Intervals in Multiple Regression
7.1 and 7.2

Regressor	$\mathbf{(1)}$	$\mathbf{(2)}$	$\mathbf{(3)}$
College $\left(X_{1}\right)$	$5.46^{* *}$	$5.48^{* *}$	$5.44^{* *}$
	(0.21)	(0.21)	(0.21)
Female $\left(X_{2}\right)$	$-2.64^{* *}$	$-2.62^{* *}$	$-2.62^{* *}$
	(0.20)	(0.20)	(0.20)
Age $\left(X_{3}\right)$		$0.29^{* *}$	$0.29^{* *}$
		(0.04)	(0.04)
Ntheast $\left(X_{4}\right)$			0.69^{*}
			(0.30)
Midwest $\left(X_{5}\right)$			0.60^{*}
			(0.28)
South $\left(X_{6}\right)$			-0.27
			(0.26)
Intercept	$12.69^{* *}$	$4.40^{* *}$	$3.75^{* *}$
	(0.14)	(1.05)	(1.06)

(a) The t-statistic is $5.46 / 0.21=26.0$, which exceeds 1.96 in absolute value. Thus, the coefficient is statistically significant at the 5% level. The 95% confidence interval is $5.46 \pm 1.96 \times 0.21$.
(b) t-statistic is $-2.64 / 0.20=-13.2$, and $13.2>1.96$, so the coefficient is statistically significant at the 5% level. The 95% confidence interval is $-2.64 \pm 1.96 \times 0.20$.
7.3. (a) Yes, age is an important determinant of earnings. Using a t-test, the t-statistic is $0.29 / 0.04=7.25$, with a p-value of 4.2×10^{-13}, implying that the coefficient on age is statistically significant at the 1% level. The 95% confidence interval is $0.29 \pm 1.96 \times 0.04$.
(b) Δ Age $\times[0.29 \pm 1.96 \times 0.04]=5 \times[0.29 \pm 1.96 \times 0.04]=1.45 \pm 1.96 \times 0.20=\$ 1.06$ to $\$ 1.84$
7.4. (a) The F-statistic testing the coefficients on the regional regressors are zero is 6.10 . The 1% critical value (from the $F_{3, \infty}$ distribution) is 3.78 . Because $6.10>3.78$, the regional effects are significant at the 1% level.
(b) The expected difference between Juanita and Molly is $\left(X_{6, \text { Juanita }}-X_{6, \text { Molly }}\right) \times \beta_{6}=\beta_{6}$. Thus a 95% confidence interval is $-0.27 \pm 1.96 \times 0.26$.
(c) The expected difference between Juanita and Jennifer is ($\left.X_{5, \text { Juanita }}-X_{5, \text { Jennifer }}\right) \times \beta_{5}+\left(X_{6, \text { Juanita }}-\right.$ $\left.X_{6, \text { Jennifer }}\right) \times \beta_{6}=-\beta_{5}+\beta_{6}$. A 95% confidence interval could be constructed using the general methods discussed in Section 7.3. In this case, an easy way to do this is to omit Midwest from the regression and replace it with $X_{5}=$ West. In this new regression the coefficient on South measures the difference in wages between the South and the Midwest, and a 95% confidence interval can be computed directly.
7.5. The t-statistic for the difference in the college coefficients is $t=\frac{\hat{\beta}_{\text {college, } 1998}-\hat{\beta}_{\text {college, } 1992}}{\operatorname{SE}\left(\hat{\beta}_{\text {college, } 1998}-\hat{\beta}_{\text {college, } 1992}\right)}$. Because $\hat{\beta}_{\text {college, } 1998}$ and $\hat{\beta}_{\text {college, } 1992}$ are computed from independent samples, they are independent, which means that $\operatorname{cov}\left(\hat{\beta}_{\text {college, } 1998}, \hat{\beta}_{\text {college, } 1992}\right)=0$ Thus, $\operatorname{var}\left(\hat{\beta}_{\text {college, } 1998}-\hat{\beta}_{\text {college, } 1992}\right)=$ $\operatorname{var}\left(\hat{\beta}_{\text {college, } 1998}\right)+\operatorname{var}\left(\hat{\beta}_{\text {college, } 1998}\right)$. This implies that $\operatorname{SE}\left(\hat{\beta}_{\text {college, } 1998}-\hat{\beta}_{\text {college, } 1992}\right)=\left(0.21^{2}+0.20^{2}\right)^{\frac{1}{2}}$. Thus, $t^{a c t}=\frac{5.48-5.29}{\sqrt{0.21^{2}+0.20^{2}}}=0.6552$. There is no significant change since the calculated t-statistic is less than 1.96 , the 5% critical value.
7.7. (a) The t-statistic is $0.485 / 2.61=0.186<1.96$. Therefore, the coefficient on BDR is not statistically significantly different from zero.
(b) The coefficient on $B D R$ measures the partial effect of the number of bedrooms holding house size (Hsize) constant. Yet, the typical 5-bedroom house is much larger than the typical 2-bedroom house. Thus, the results in (a) says little about the conventional wisdom.
(c) The 99% confidence interval for effect of lot size on price is $2000 \times[0.002 \pm 2.58 \times 0.00048]$ or 1.52 to 6.48 (in thousands of dollars).
(d) Choosing the scale of the variables should be done to make the regression results easy to read and to interpret. If the lot size were measured in thousands of square feet, the estimate coefficient would be 2 instead of 0.002 .
(e) The 10% critical value from the $F_{2, \infty}$ distribution is 2.30 . Because $0.08<2.30$, the coefficients are not jointly significant at the 10% level.
7.8. (a) Using the expressions for R^{2} and \bar{R}^{2}, algebra shows that

$$
\bar{R}^{2}=1-\frac{n-1}{n-k-1}\left(1-R^{2}\right) \text {, so } R^{2}=1-\frac{n-k-1}{n-1}\left(1-\bar{R}^{2}\right) .
$$

Column 1: $R^{2}=1-\frac{420-1-1}{420-1}(1-0.049)=0.051$
Column 2: $R^{2}=1-\frac{420-2-1}{420-1}(1-0.424)=0.427$

Column 3: $R^{2}=1-\frac{420-3-1}{420-1}(1-0.773)=0.775$
Column 4: $R^{2}=1-\frac{420-3-1}{420-1}(1-0.626)=0.629$
Column 5: $R^{2}=1-\frac{420-4-1}{420-1}(1-0.773)=0.775$
(b) $H_{0}: \beta_{3}=\beta_{4}=0$
$H_{1}: \beta_{3} \neq, \beta_{4} \neq 0$
Unrestricted regression (Column 5): $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}, R_{\text {unrestricted }}^{2}=0.775$
Restricted regression (Column 2): $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}, R_{\text {restricted }}^{2}=0.427$

$$
\begin{aligned}
F_{\text {HomoskedasticityOnly }} & =\frac{\left(R_{\text {unrestricted }}^{2}-R_{\text {restricted }}^{2}\right) / q}{\left(1-R_{\text {unresticted }}^{2}\right) /\left(n-k_{\text {urrestricted }}-1\right)}, n=420, k_{\text {urrestricted }}=4, q=2 \\
& =\frac{(0.775-0.427) / 2}{(1-0.775) /(420-4-1)}=\frac{0.348 / 2}{(0.225) / 415}=\frac{0.174}{0.00054}=322.22
\end{aligned}
$$

5% Critical value form $F_{2,00}=4.61 ; F_{\text {HomoskedasticityOnly }}=F_{2,00}$ so H_{0} is rejected at the 5% level.
(c) $t_{3}=-13.921$ and $t_{4}=0.814, q=2 ;\left|t_{3}\right|>c$ (Where $c=2.807$, the 1% Benferroni critical value from Table 7.3). Thus the null hypothesis is rejected at the 1% level.
(d) $-1.01 \pm 2.58 \times 0.27$

