Chapter 14 Introduction to Time Series Regression and Forecasting

- 14.1. (a) Since the probability distribution of Y_t is the same as the probability distribution of Y_{t-1} (this is the definition of stationarity), the means (and all other moments) are the same.
 - (b) $E(Y_t) = \beta_0 + \beta_1 E(Y_{t-1}) + E(u_t)$, but $E(u_t) = 0$ and $E(Y_t) = E(Y_{t-1})$. Thus $E(Y_t) = \beta_0 + \beta_1 E(Y_t)$, and solving for $E(Y_t)$ yields the result.
- 14.2. (a) The statement is correct. The monthly percentage change in IP is $\frac{IP_t IP_{t-1}}{IP_{t-1}} \times 100$ which can be approximated by $[\ln(IP_t) \ln(IP_{t-1})] \times 100 = 100 \times \ln\left(\frac{IP_t}{IP_{t-1}}\right)$ when the change is small.

Converting this into an annual (12 month) change yields $1200 \times \ln \left(\frac{IP_t}{IP_{t-1}} \right)$.

(b) The values of *Y* from the table are

Date	2000:7	2000:8	2000:9	2000:10	2000:11	2000:12
<u>IP</u>	147.595	148.650	148.973	148.660	148.206	146.300
Y		8.55	2.60	-2.52	-3.67	-7.36

The forecasted value of Y_t in January 2001 is

$$\hat{Y}_{t|t-1} = 1.377 + [0.318 \times (-7.36)] + [0.123 \times (-3.67)] + [0.068 \times (-2.52)] + [0.001 \times (2.60)] = -1.58.$$

- (c) The *t*-statistic on Y_{t-12} is $t = \frac{-0.054}{0.053} = -1.0189$ with an absolute value less than 1.96, so the coefficient is not statistically significant at the 5% level.
- (d) For the QLR test, there are 5 coefficients (including the constant) that are being allowed to break. Compared to the critical values for q = 5 in Table 14.5, the QLR statistic 3.45 is larger than the 10% critical value (3.26), but less than the 5% critical value (3.66). Thus the hypothesis that these coefficients are stable is rejected at the 10% significance level, but not at the 5% significance level.

(e) There are $41 \times 12 = 492$ number of observations on the dependent variable. The BIC and AIC are calculated from the formulas $BIC(p) = \ln\left(\frac{SSR(p)}{T}\right) + (p+1)\frac{\ln T}{T}$ and $AIC(p) = \ln\left(\frac{SSR(p)}{T}\right) + (p+1)\frac{2}{T}$.

AR Order (p)	1	2	3	4	5	6
SSR (p)	29175	28538	28393	28391	28378	28317
$ \ln\!\left[\frac{SSR(p)}{T}\right] $	4.0826	4.0605	4.0554	4.0553	4.0549	4.0527
$(p+1)\frac{\ln T}{T}$	0.0252	0.0378	0.0504	0.0630	0.0756	0.0882
$(p+1)\frac{2}{T}$	0.0081	0.0122	0.0163	0.0203	0.0244	0.0285
BIC	4.1078	4.0983	4.1058	4.1183	4.1305	4.1409
AIC	4.0907	4.0727	4.0717	4.0757	4.0793	4.0812

The BIC is smallest when p = 2. Thus the BIC estimate of the lag length is 2. The AIC is smallest when p = 3. Thus the AIC estimate of the lag length is 3.

- 14.3. (a) To test for a stochastic trend (unit root) in $\ln(IP)$, the ADF statistic is the *t*-statistic testing the hypothesis that the coefficient on $\ln(IP_{t-1})$ is zero versus the alternative hypothesis that the coefficient on $\ln(IP_{t-1})$ is less than zero. The calculated *t*-statistic is $t = \frac{-0.018}{0.007} = -2.5714$. From Table 14.4, the 10% critical value with a time trend is -3.12. Because -2.5714 > -3.12, the test does not reject the null hypothesis that $\ln(IP)$ has a unit autoregressive root at the 10% significance level. That is, the test does not reject the null hypothesis that $\ln(IP)$ contains a stochastic trend, against the alternative that it is stationary.
 - (b) The ADF test supports the specification used in Exercise 14.2. The use of first differences in Exercise 14.2 eliminates random walk trend in ln(IP).
- 14.4. (a) The critical value for the *F*-test is 2.372 at a 5% significance level. Since the Granger-causality *F*-statistic 2.35 is less than the critical value, we cannot reject the null hypothesis that interest rates have no predictive content for IP growth at the 5% level. The Granger-causality statistic is significant at the 10% level.
 - (b) The Granger-causality *F*-statistic of 2.87 is larger than the 5% critical value, so we conclude at the 5% significance level that IP growth helps to predict future interest rates.
- 14.7. (a) From Exercise (14.1) $E(Y_t) = 2.5 + 0.7E(Y_{t-1}) + E(u_t)$, but $E(Y_t) = E(Y_{t-1})$ (stationarity) and $E(u_t) = 0$, so that $E(Y_t) = 2.5/(1 0.7)$. Also, because $Y_t = 2.5 + 0.7Y_{t-1} + u_t$, var $(Y_t) = 0.7^2 \text{var}(Y_{t-1}) + \text{var}(u_t) + 2 \times 0.7 \times \text{cov}(Y_{t-1}, u_t)$. But $\text{cov}(Y_{t-1}, u_t) = 0$ and $\text{var}(Y_t) = \text{var}(Y_{t-1})$ (stationarity), so that $\text{var}(Y_t) = 9/(1 0.7^2) = 17.647$.
 - (b) The 1st autocovariance is

$$cov(Y_t, Y_{t-1}) = cov(2.5 + 0.7Y_{t-1} + u_t, Y_{t-1})$$

$$= 0.7 var(Y_{t-1}) + cov(u_t, Y_{t-1})$$

$$= 0.7\sigma_Y^2$$

$$= 0.7 \times 17.647 = 12.353.$$

The 2nd autocovariance is

$$cov(Y_t, Y_{t-2}) = cov[(1+0.7)2.5+0.7^2 Y_{t-2} + u_t + 0.7u_{t-1}, Y_{t-2}]$$

$$= 0.7^2 var(Y_{t-2}) + cov(u_t + 0.7u_{t-1}, Y_{t-2})$$

$$= 0.7^2 \sigma_Y^2$$

$$= 0.7^2 \times 17.647 = 8.6471.$$

(c) The 1st autocorrelation is corr $(Y_t, Y_{t-1}) = \frac{\text{cov}(Y_t, Y_{t-1})}{\sqrt{\text{var}(Y_t) \text{var}(Y_{t-1})}} = \frac{0.7\sigma_Y^2}{\sigma_Y^2} = 0.7.$

The 2nd autocorrelation is corr $(Y_t, Y_{t-2}) = \frac{\text{cov}(Y_t, Y_{t-2})}{\sqrt{\text{var}(Y_t) \text{var}(Y_{t-2})}} = \frac{0.7^2 \sigma_Y^2}{\sigma_Y^2} = 0.49.$

(d) The conditional expectation of Y_{T+1} given Y_T is

$$Y_{T+1/T} = 2.5 + 0.7Y_T = 2.5 + 0.7 \times 102.3 = 74.11.$$