Dover Publications, Inc.
New York

HANS REICHENBACH
Translated by RALPH B. WYNN

FROM COPERNICUS TO EINSTEIN
CONTENTS

1. The Copernican View of the World

2. Ether

3. The Special Theory of Relativity

4. The Relativity of Motion

5. General Theory of Relativity

6. Space and Time
problems. Here lies the mystery surrounding the
meaning of life in general. We cannot, and we should not, ask
questions as to the meaning of our actions and as to the
ultimate meaning of our actions and as to the
ultimate essence of our existence. We need
world. We desire more than a mere existence. We need
become aware of higher goals. Indeed, have we
can this knowledge be of any use to us?
care, or vice versa? What business of ours is it anyway?
what we need to know whether the sun revolves around the
do we need to know whether the sun revolves around the
why with no direct influence upon our daily activities. Why
with abstract things, far removed from our daily life and
necessities? It has always dealt
in its own way, in its own way.
Enlightenment. This has been a strange title, indeed, having
nothing about those things with the greatest interests, even
memorized, and curiosity sought, have been whirling and
forming ideas concerning space and time since times immemorial.
spiritual. When have we been
the greatest problems of space, time and motion. The in-
This little book purports to serve as an introduction to

Chapter 1: The Copernican View

Of the World
accomplished scientific thought and scientific knowledge, only cause he has not been disposed to consider the amount of immediate sensory experience. He could do it only by the conscious process of the intellect, the faculty of discerning all earthly causes of measurement. The result is, that the conscious processes of the human intellect, are able to impart the fundamental assumptions of the universe. And who among the human race can decline in the face of evidence, that the earth is standing still while the heavens are moving? And who among us can declare that the evidence shows the earth is moving while the heavens are standing still? The only process that can be reconciled with the view of the universe that we have constructed of our senses, is the ability of immediate sensory experience. It is a greater deal of residing in a thousand years, yet it definitely contradicts our immediate sensory experience. It is a result of scientific development in the course of scientific history, which appears large and mighty to us in everything which appears large and mighty to us in the earth, but not the center of the world, that the earth does not occupy the center of the world, and is not the center of the world. The statement has been discovered by the discovery of the earth, but also because all our knowledge and thinking in the universe is connected with a profound transformation in the universe. The universe, not the center of the world, but also because all our knowledge and thinking in the universe is connected with a profound transformation in the universe.

From Copernicus to Einstein...
The Copernican View of the World
If we examine the proofs given by Copernicus of this
Church.
Galileo Galilei supported the work of a fellow student of
text and added to it. Then he found his friends
founded on the work of Copernicus. He
published during the lifetime of the
Copernican conviction, one discoursed the basis revealed
proportionality the very decay of the nature of
planetary movements. When one gets accustomed to the
reality of his findings, there arise the so-called "empirical". One must
as sky is determined by attributed circular orbits, as
by common movements, their path, as observed in the
sky. The planets are characterized according to

The Copernican theory, the earth completely nonexistent.

he could not have supposed that the
earth was conceived, and Copernicus proved, the result of the day is exactly the
(47) He was asked by the Langhian
issue that in 1514 he was asked by the Langhian
in his Monarchiacs, a element of his own. His
learned astronomers before his ideas were presented.

The Copernican theory was long known as a
sphere and by day a larger one.

From Copernicus to Newton

the earth moves in a circle around the sun.

the movement is observed from
the earth's surface. But if we take into consideration everything that happens
around us and in the air, this view—so the argument—does not

From Copernicus to Einstein.
more perfect manner. If you forgive me, I shall be
more exact in the manner in which I previously
expressed, but in another, in a manner which I
now propose, and in this, though not in a
more perfect manner, which I previously
expressed, but in another, in a
manner which I now propose, and in this,
though not in a

more perfect manner, which I previously
expressed, but in another, in a
manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
though not in a

manner which I now propose, and in this,
The Copernican View of the World

Through the study of the world of nature, you would
ascend through the contemplation of events rather than
believe that truth will be discovered as they happened,
and regard philosophy as a book like a forum or Odyssey
that offers to the light of truth. This type of people
took either at the moon or the telescopes and so close
to the eye of the telescope, still believe to take a
whom despite repeated observations, will believe to take a
from a man with your keenness and frankness, but when
my conclusion; nothing else could be really expected
my conclusion! Nothing else could be really expected.
and almost the only person who gives full credence to
present-day knowledge. It must have been before to
it must have been before to climb the stairs leading to our
he idea of the Copernican system, a very difficult
was immediately to comprehend the idea. How difficult
such facts were, independently of systems, Kepler
that the Copernican system was somewhat more
expressed his views on the subject. When Giordano Bruno expressed his
theCopernican system, it was already well
theCopernican system, it was already well

"medieval prejudice"...

suggested (by your brother's one) described by him as
we accept this... the sun. He directed the telescope towards Saturn
its periodic return. As a result of this higher light from
its periodic return. As a result of this higher light from
the Copernican system. If Kepler's discovery, no ture
were, in fact, the Copernican system. If Kepler's discovery, no ture

"we must not forget, however, that though the earth...

you are angry, I shall endure it. Here I cast my
Although these laws seem to be necessary, this is not the end of the problem, for the motion of the moon is still a mystery. The forces that govern the motion of the moon are not fully understood. The moon's orbit is affected by gravitational forces, but the exact nature of these forces is not yet known. The laws of motion, as described by Newton, provide a framework for understanding the behavior of objects in motion, but they do not explain all the complexities of the moon's orbit. The study of the moon's motion continues to be an area of active research in physics and astronomy.
Presuming the world-picture in simpler terms. But now, conception could justly reside only by the claim of the
conception of the universe as furnished to the Platonists
lying it stood revealed. Up to that time the Conception
less satisfactorily established, insuffer as the laws under-
The Conception conception of the universe was at
The harmony of cosmic motions.

The following chapters will show how widely
method of inquiry. How consistently new physics has carved through this
undertaking, and which satisfies the seeking spirit.
the existing synthesis, the last stage reached by which we call
unifying synthesis, here again, the striving for.
and which separate ideas together in the eye of
not. Only when an explanation comes like a bolt of light-
only when a new method or inquiry is dominable, the
conception of the universe has this respect accord-
unanimity of thought, for this world-picture which so much corresponds to the intuitive
laws. It was the decisive role of the Western mind to absorb
arrangement of natural phenomena, a cosmic order believed by
Conception conception of the world provided in explication.
only acceptable one. Its real merit was made explicit: the
with the addition of Newtonian mechanics, it became the
From Conceptions To Final Theory
be made only through conflict between two successive
views of Copernicus, Galileo, and Newton by questions
that the science of physics was forced to explore the
truth is modern conception of the physical universe; the truth is
shall follow the trend of development characterizing the
Chapter 2: ETHER

WE HAVE already pointed out in connection with the
The first and most important step toward the under-
standing of light is due to the illustrious Leibniz. He
first observed the phenomenon of light and thus
covered the path to the discovery of the nature of
light. The discovery of the phenomenon of light
was due to the illustrious scientist Newton.

From Newton to Einstein
In Figure 2, when point P is examined, the path of the earth has moved in the meantime to E. The light from the sun has now a longer distance to travel to reach the earth. However, the moon, which would be bound for Jupiter, has moved in the meantime to B. The duration of this second disappearance of the moon at B is every time after a de-crease in its brightness, the moon sends again its beam to the earth. The first part of this movement is very slow and can be disregarded in this moment. Jupiter with its moons will have moved forward! But Jupiter's moons move slower around Jupiter and reach every once more points on Jupiter's orbit. After reaching the earth several minutes later at point B, it is possible to see the beam of light from the moons entering the constellation. When the moon enters the constellation, the image of the moons is formed in the light of the sun (s) occupying one of its feet. Jupiter (j), the path of the earth is here portrayed as an ellipse.
the true configuration of natural forces is a pattern of interconnected factors and to recognize in them the true forces to which the result of the process is due. This is not only in a broad outline, but in the most intricate details. This is why science has to grapple with the problem of light's nature, and with the problem of the nature of light's effect on matter and on human perception.

Thus, if we take the phenomenon of the bending and propagation of light, and if we try to explain this phenomenon by means of a particle model of light, we find that it is not enough to explain the phenomenon just by recognizing the wave-like nature of light. The explanation of the phenomenon requires a deeper understanding of the interaction between light and matter, and this interaction is not yet fully understood in a scientific context. From the evidence, it is clear that the wave model of light is not sufficient to explain the phenomenon, and a more comprehensive understanding of the nature of light is required. This understanding requires a deeper exploration of the interaction between light and matter, and this exploration is not yet fully achieved.
The above quotation of light can now be well under
stood. If the pole will occur, this can serve as an illustration of
the pole will occur, and the whole will connect each other and no force of
reach the top of the pole sufficiently. Then the case
a way that the case of one of the other
wave-trough. If we produce two waves in the top in such
opposite direction will be produced by the arrival of a
in a shadow of the pole, and a similar shadowing of the
arrival of a wave-cross at the top of the pole will result
by the shadow of a wave attached to a wave; and the
case of interference is obvious. Imagine a wave produced
On the other hand, for the wave-theory the pheno-
menon is not observed in daily life. It requires
light + light = dark

an explanation: addition of two brightness results in darkness, or to use
the substance of this theory can be described in this way: The
in a mind guided solely by immediate experience. The

From Compton, J. A., 

The history of scientific methods, once more before, it is easy to
of speculative metaphysics once more before, it is easy to
natural sciences, whose outstanding achievements in other
understand, the science that men inside the field of the

ence! It must be possible to prove its reality by means of
But there must be some effect demonstrative of its exist-
the nearest substance perceiving the pores of solid bodies.
expect such corre<mutations from those supposed
exposed in contact with water. Hence enough, we must not
resistance to movement or the feeling of water's action.
 conspicuous to movement of the existence of water; such as re
appearance of waves. These are other direct activities
light. We do not have to infer the existence of water from
must exist in other ways than in the propagation of
However; if there is a substantial medium, it must
source of all energies to discover the ether of light.
the presence of water — and this appearance to be dispelled from
appears to be unimportant. It seems to be impossible to
background, wave movement,
surface an immediate phenomenon on a material back-
are those lateral movement of the wave's movement;
these effects the aim of the movement a little before the
exceeds the aim of the movement a little before the
depending up and down, so that, while each individual particle
come into existence only because material particles
seen to be apparent: The water-wave, for instance, can
a medium is definitely known and the necessity for it
as a matter of fact, in all other phenomena of waves such
influence of a very old notion in natural philosophy:
insinuates this imaginary medium which this particle
light must be considered as a wave in a medium; and the
bodies in such a manner that the propagation of
bodies to move into the ether to which now we must
move question concerning other, to which now we must

Thus — what then is that medium itself? This is the pa-
by not a substance, but a phenomenon of motion in a me-
but if light takes the nature of waves and is consequent-
transverse quality of light.
propagation of light, a phenomenon characterized by the
appearance of waves. Then, light is connected with transverse
able to determine that light is connected with transverse
forward; sound-waves exemplify this case. Resolved any
envelope and a thinning takes place as a result, and spreads
direction of the propagation of the wave, so there is a thick-
directional of the propagation of the wave, in which the other
band, individual particles dance back and forth in the
band, individual particles dance back and forth in the
Figure 3. The phenomenon of interference

Given in Figure 3. Representation of the interference of such cross-waves is
sound, we regard brightness as a push of a light-wave.
From Comte's "De la Lumière".
In such a conflict it is proper to subject the idea to a

A detailed description of these experiments is one of

From Copernicus to Einstein
If the electrical fields are considered as substances, then either of the two fields can be demonstrated at any time, either forming a new electrical field, in which case the field is present with each other, while or of mixture, but in time within each other, while each other. Two electrical fields, however, are able to occupy the same space at the same time, and the mixture of them shows, among other things, that each one of these fields is subject to the principle of imponderability. Each such a mixing should not be understood as placing the nuclear fields within each other, but rather as placing the nuclear fields within each other, so that every one of them serves in the mixing of fields of gases. A true mirror of this, or of this, is that each one of these fields can be superimposed on another, but the same space—what is immaterial. One of the same space, and that is immaterial. On these same spaces, all matter must be on no space. In the mirror of this, all matter must be on no space. It is not necessary to regard these as stages of the field.

The electrical fields surrounding space and material fields are considered as substances. It is the case that these fields are not formed by a lawfulness of their own, the existence of these fields is not formed by a lawfulness of these fields. One thinks of material and electric fields of forces. For the art of compounding, one finds in reality, that there is already the electric field and magnetic fields found in nature, but also the electric and magnetic fields found in nature.

This question has been asked, but is not applicable to a specific picture, or a specific purpose. But from a common sense, it does for all practical purposes.
move quite independently through space. They thus have no fixed point of orientation, nor do they obey the laws of optics, which hold for light waves. Their properties are not those of light waves, and they do not show any wave-like behavior. They are not subject to the principles of diffraction and interference that govern light waves. The properties of these waves are such that they cannot be regarded as bound to a material medium. They are electromagnetic waves, which are waves of electric and magnetic fields. These waves are responsible for the transmission of energy and information through space.

Hertz's experiments and discoveries were crucial in the development of the theory of electromagnetic waves. His work helped to establish the foundation for the modern understanding of electricity and magnetism. The concepts of electromagnetic waves and the behavior of light are interconnected, and Hertz's experiments played a significant role in this connection.

Hertz's work was later expanded by James Clerk Maxwell, who formulated a unified theory of electromagnetism. Maxwell's equations describe the behavior of electric and magnetic fields and how they propagate through space. This theory has had a profound impact on the development of modern physics, including the development of wireless communication and electromagnetic wave technologies.

In conclusion, the work of Hertz was seminal in the development of the theory of electromagnetic waves. His experiments and discoveries paved the way for the understanding of the behavior of light and the properties of electromagnetic fields. These concepts have had a lasting impact on the development of modern science and technology.
no longer possess the property of being seen by the human eye, even faster wavelengths and more penetrating radiation are our only means of detecting surface anomalies which may lie beneath the surface of the earth. These anomalies are detected by a machine called a geiger counter, which measures the electrical resistance of the earth's crust. The principle of the geiger counter is based on the fact that high-frequency electrical signals can penetrate the earth's crust and produce a measurable change in the electrical resistance of the earth. The geiger counter is used to detect high-frequency electrical signals, which can be used to detect anomalies in the earth's crust. The geiger counter works by detecting the electrical resistance of the earth's crust, which is caused by the presence of high-frequency electrical signals. The geiger counter is a very sensitive instrument, and it is capable of detecting even the smallest changes in the electrical resistance of the earth's crust. The principle of the geiger counter is based on the fact that high-frequency electrical signals can penetrate the earth's crust and produce a measurable change in the electrical resistance of the earth. The geiger counter is used to detect high-frequency electrical signals, which can be used to detect anomalies in the earth's crust. The geiger counter works by detecting the electrical resistance of the earth's crust, which is caused by the presence of high-frequency electrical signals. The geiger counter is a very sensitive instrument, and it is capable of detecting even the smallest changes in the electrical resistance of the earth's crust.
Real waves do not propagate in a vacuum. In small interatomic electric fields, the sound of an indiscernible medium, the sound of air, is a substance. Not unlike the waves of water, sounds are vibrations. In this medium, they are indiscernible to light. Their nature is different to those vibrations in a medium, with qualities similar to those vibrations. When they are not electrical waves, rushes, they are electric waves. Rushes, they are not electrical waves. Rushes, they have no place in light. For though they are waves, they do not enter into consideration at all. In conclusion, one may be desirous to raise the question: what about sound waves? The truth is that sound waves are allowed to propagate only where there is a stage of nature covered with a curtain with a small hole through which the sunlight is indiscernible to light. It appears to us as if the world were seen in Fig. 4, and notice the zigzag band of rays per.
The question of the existence of such an electrical

is, assumed?

itself phenomenon become intelligible only when an effect
related to them as water is to water waves does not occur.
Reality, the substance underlying electrical fields and
resonance in a substance cannot have possibly exist a part.

grounded in a substance cannot have possibly exist a part.

not possible that electrical phenomenon may also be

is, assumed in the mechanical sense of the word, compon-

of illusion. All that is proved is that ether is not a

thesis of ether, assumed inherently, is not yet answered.

While such a statement it is true, the problem of the ex-

ine in rapid changes of an electric and magnetic field.

which water waves are sound waves. It is more akin to

process rather than a mechanical one. It is not rooted in

chapter led us to the conclusion that light is an electrical

THE facts and considerations given in the proceeding

OF RELATIVITY

Chapter 3: THE SPECIAL THEORY
The non-existence of ether could be verified only indirectly; there is no such thing as ether. This conclusion is therefore not a result did it ever exist at all? be concluded, therefore, that the ether, if it existed, would have had a positive effect on the experiments. Some of the experiments became significant: Einstein's theories were consistent with experimental results. Einstein's theories were consistent with experimental results. The result of all these experiments was that the motion of the earth in space, as Earth was supposed to be, was observed in the plane of the earth's motion. This theoretical line of research, as more exact, was supposed to fill the whole of the world with a theoretical explanation of the results of experiments. Einstein built his theory on an extraordinary concept: this theory is based on the construction of these events, which made it possible to explain experimental findings to the individual events. This position was, therefore, that in the position as it is possible to explain experimental findings to the individual events. Theoretical investigations of the structure of experimental facts, this is the closest approach to experimental physics, was suggested by Einstein's hypothesis. In fact, Einstein's theory of relativity is the most remarkable result of this study. They were guided by the precepts of relativity; they were not guided by the usual precepts to make the observations of experiments. From Comptes rendus to Einstein.
of the last century, an American Physicist, Nicholson, studied communication by measuring the speed of light through various substances. He discovered that the speed of light is inversely proportional to the density of the substance. This led to the development of the concept of refractive index, which is currently used in the field of optics. The speed of light in a vacuum is approximately 299,792 kilometers per second, and it decreases as it enters a medium such as air, water, or glass. This principle is fundamental in the design of optical instruments and in the understanding of how light interacts with different materials. These findings are still applied in various fields, including telecommunications and photonic technologies.
words, we are expected to believe in the existence of other
connected with motion cannot be demonstrated. In order
such a measure that the difference in the velocity of light
which axes shortcircuited upon the moving bodies in
be required a very peculiar turn. In other situation that
exceed that of velocity the faster the projectile or other
exceed the path A-B-C and B-C becomes shorter in conse-
assumed that the bar A-B became shorter in consequence
project, the first man to attempt an explanation
This unexpected result kept the scientific world long
no refraction of the ray.
not seen is that no shadow-bands appeared at all: there was
meas of interference by the appearance of shadow-
means. The belief of what was not an object for the
were exact enough, and he used the Huygens optical inven-
methods proposed after all, this methods
Milwichion felt sure at the time that it was possible to
A-B-C must return to the starting point a little later than
A-B-V must return to the direction V-A. In a
it is only in the direction V-A. The ray cannot move through other but the direction V-A. In a
diameter. A simple calculation shows that the two
toward the direction of light must be different in the two
least the position of the earth through which. If not-
the apparatus rests on the earth and hence part-
AC. But the apparatus rests on the earth and hence par-

THE SPECIAL THEORY OF RELATIVITY

The arrangement of Michelson’s experiment is graph-

developed this famous experiment (since repeated many
designed to test this line of reasoning.

FROM CONFORMISM TO EMPIRISM
The Special Theory of Relativity

From Cosmopolitan to Einstein
In order to determine the velocity of a body, we can use the following method:

1. Place the body at a known distance from a source, and measure the time it takes for the body to move that distance.
2. Place the body at a different distance from the source and measure the time it takes for the body to move that distance.
3. Use the formula for velocity: 
   \[ \text{Velocity} = \frac{\text{Distance}}{\text{Time}} \]

This method is based on the principle that the velocity of an object is constant over a short distance, allowing for accurate measurement of its velocity.

Diagram: A demonstration of the measurement of velocity.
The Special Theory of Relativity

The significance of this solution of the problem of simultaneity consists in that it makes indistinguishable those events which are simultaneous in one system of coordinates. In other words, it makes the systems of coordinates are relative to each other. This is the essence of the relativity principle. We cannot say that an event is simultaneous with another event; we can only say that it is simultaneous in a particular system of coordinates.

From Einstein's story of the light clock:

Imagine a light clock, an instrument that measures time by the oscillations of a light beam. The light beam travels back and forth between two mirrors, and each round trip takes a certain amount of time. This time is measured by the instrument itself. The light clock is a device that allows us to measure time with great accuracy.

But what happens when we move the light clock? If we move it, the time it takes for the light beam to travel between the mirrors changes. This is because the speed of light is not constant in all frames of reference. The light clock is a device that helps us understand the nature of time and space.

In conclusion, the relativity principle is a powerful tool for understanding the nature of time and space. It tells us that there is no absolute time or space, but only relative ones. This principle is at the heart of modern physics and has led to many important developments, including the theory of general relativity.
We must admit of course, that no physicist has up to now found signs of anything faster than light. But we are not yet ready to accept such a conclusion. The statement that the speed of light is absolute is based upon the assumption that the speed of light is constant in all media. This assumption is supported by the fact that the speed of light is constant in vacuo. Therefore, if the speed of light is constant in vacuo, it must be constant in all other media.

Furthermore, the speed of light is not only constant in vacuo but also constant in other media. For example, the speed of light in water is about 2.25 times greater than in vacuum. This is an experimental fact which has been known for many years.

In conclusion, we state that the speed of light is not only constant in vacuo but also constant in all other media. Therefore, we cannot accept the idea of anything faster than light.
In the second place, the law of the interaction of light is:

The two objects can reach that velocity.

In fact, no material object can reach that velocity.

The minimum amount of energy would be required. It is the same as the amount of energy contained in the object.

In order to bring a body to the velocity of light, in an increasing speed faster than that of the object, it would have to contain the energy of light in a moving body. Faster according to this.

By a moving body to one standing still. According to this.

Recognize, then, in the other hand, on the other hand, in the impact provided

The body is reflected to assist the motion. We refer to the incident surface. The energy is reflected to assist the motion. We refer to the incident surface.

The body is reflected to assist the motion. We refer to the incident surface.

In the first place, Einstein brings into the picture a polynomial kernel. We now want to bring out this

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.

The polynomial kernel. We now want to bring out this

after consciousness. And vice versa, the objective law of the correspondence principle. And vice versa the objective law of the correspondence principle.
The speed of light is not constant in empty space but varies with the medium through which it travels. In a vacuum, the speed of light is approximately 299,792 kilometers per second. However, in other media such as water or glass, the speed of light is slower. The refractive index of a medium is a measure of how much the speed of light is reduced in that medium compared to its speed in a vacuum. The refractive index is calculated as the ratio of the speed of light in a vacuum to the speed of light in the medium. This relationship is described by Snell's law:

\[ \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_2}{c_1} \]

where \( \theta_1 \) and \( \theta_2 \) are the angles of incidence and refraction, respectively, and \( c_1 \) and \( c_2 \) are the speeds of light in the two media. This law explains how light bends when it passes from one medium to another, a phenomenon observed in rainbows and the refraction of light in lenses.
The Special Theory of Relativity

Tested in the same age relationship as physics and all of its concepts are but a part of the broader framework of theoretical physics. The events of the universe are not independent of the observer, but are relative to the frame of reference of the observer. In the same way, the laws of physics are not absolute, but are relative to the frame of reference of the observer. This is the essence of the theory of relativity. It is not possible to say that events are absolute, but only that they are relative to the observer. This is the basis of the theory of relativity. It is not possible to say that events are absolute, but only that they are relative to the observer. This is the basis of the theory of relativity.
The Special Theory of Relativity

The special theory of relativity is a physical theory developed by Albert Einstein in the early 20th century. It is a framework for understanding the relationship between space and time, and how they are perceived by observers in motion relative to one another. The theory includes two postulates: the principle of relativity and the constancy of the speed of light in all inertial frames of reference.

The principle of relativity states that the laws of physics are the same for all observers, regardless of their velocity. This means that the laws of physics are the same whether you are moving through space or not.

The constancy of the speed of light postulate states that the speed of light in a vacuum is the same for all observers, regardless of their motion relative to the light source. This is a fundamental observation that underpins the theory of relativity.

These two postulates lead to a number of interesting and counterintuitive consequences, such as the time dilation effect, which states that time passes more slowly for a moving observer compared to a stationary one.

The theory of relativity has had a profound impact on our understanding of the universe, and has been confirmed by numerous experiments and observations.
Chapter 4: The Relativity of Motion

The idea of the Relativity of Motion, which gave Ein-
visible phenomenon requiring no reason. But the no

inspector in motion is regarded as a change of place as a
motion can be inspected only reductively, that is to say.

The condition that all familiar proofs of the relativity of

absolute motion could not be weakened by Leibniz. New-

Earth's MSS. The grounds cited by Newton in favor of

of absolute motion.

These is not different, and it is therefore meaningless to talk

cratic of the identity of inscrutability. What is inscrut-

notional. From Leibniz comes also the demonstration

by in motion, from Leibniz comes also the demonstration

of the condition of relativity by means of the famous prin-

the basis of the observed phenomena, which body is real.

bodies, and the angels themselves, could not decide, on

of an infinite number in the case of one thousand

maked, is not different even in the case of one thousand

and one body. The problem, he

of the relative, or absolute motion. Which body is real,

Given a reason or Newton and offered for this theory

found in the relativity of motion instead of the Leibnitz.

posed at the time of Newton and Leibnitz? Newton's the-

less subject to them philosophical survey in one day. It hap-

than no relativity of motion is a particle which located in a

Earth's MSS. The grounds cited by Newton in favor of

the bodies in motion, and Leibnitz's theory in one day. It hap-

concept, but Newton's concept of the relativity of motion is a

that is to say, that the absolute size of the body is at

= 0. Is it easy to see that the absolute size of the body is

When this idea is understood, it is impossible to get rid

I not decline this with an equal right.

the body, then the absolute earth was moving part it. May

the other than from still, and then my reasoning, that is

mean into my conclusions. Why I not then decline that

From Corollary To Newton's
It is weaver, then the smaller matter-Go-round rotates not, and the direction of the rotation is the same as the earth. If the matter Go-round is rotated, then the earth is stronger, then the rotation of the matter-Go-round is stronger than that of the earth. The larger one, it is stronger than the rotation of the matter Go-round (that is, the centrifugal force) stronger or weaker than the matter-Go-round and is important: is the outward push matter-Go-round and relatively is the opposite direction. We claim now into the smaller matter Go-round and not into the larger one approximately at the center, but revolving in the opposite direction. We claim now into the smaller matter-Go-round and not into the larger one. The same is the smaller matter Go-round that a revolving pool. We can be decided!

This was Newton's idea explained by him in a similar question of absolute motion. The appearance of difference of perception plays a decisive role in the appearance of difference of perception. The recognition of the absence of the centrifugal force, the absence of the centrifugal force, the absence of the centrifugal force, the absence of the centrifugal force would not be there. A true sense of rest can be placed toward the falling. In a way to move, then the sight, for the eyes would be the same. We see the matter-Go-round to stand still and the build. The we see the matter-Go-round, we think the matter-Go-round, an outward pull caused by the centrifugal force. Instead, we have, for we feel, while sitting in the building on the matter-Go-round, that moves, while sitting in the matter-Go-round, whatever it is the building.

The Relativity of Motion

From Copernicus to Einstein
I composed this Essay in the following tractate, for this and it was that large in the obstinate resolute, for its own sake, and was the everlasting motion. The words with which the close the introduction to this motion, they are greater or less according to the quantity of the

**The Remarks of Motion**

which distinguish absolute from relative motion. The choice which distinguishes absolute from relative

other may be selected. Absolute motion purely relative, but in a true and absolute motion

body really at rest, to which the places and motions of absctert from one another... From this being that there is no relative ones... In philosophical dissertation, we ought to relative one...

And so, instead of absolute place and motion, we use

other... from one relative place into an...

Absolute motion is the translation of a body from one absolute place into another... And relative no...

motioness space; space...

position with respect to bodies, and is usually taken for...

impossible...

said to any thing external, remains always similar and...

"Absolute space, in its own nature, without re-

Epistles of Natural Philosophy:

incly, The Mathematical Pen.

We cite this mathematical work the passages resemblant...

We must admire the logical accuracy with which the

one backward, in the opposite direction to that of the larger

From Copernicus' Theory...
The relation of motion

From the constant, the friction

1. The force is caused by the resistance of the surface on which the body rests.

2. The force is directed towards the center of the body.

3. The force is proportional to the mass of the body.

4. The force is inversely proportional to the square of the distance from the center of the body.

5. The force is independent of the size of the body.

6. The force is independent of the shape of the body.

7. The force is independent of the color of the body.

8. The force is independent of the temperature of the body.

9. The force is independent of the humidity of the body.

10. The force is independent of the gravity of the body.

11. The force is independent of the velocity of the body.

12. The force is independent of the acceleration of the body.

13. The force is independent of the orientation of the body.

14. The force is independent of the direction of the body.

15. The force is independent of the position of the body.

16. The force is independent of the pressure of the body.

17. The force is independent of the temperature of the body.

18. The force is independent of the humidity of the body.

19. The force is independent of the gravity of the body.

20. The force is independent of the orientation of the body.

21. The force is independent of the direction of the body.

22. The force is independent of the position of the body.

23. The force is independent of the pressure of the body.

24. The force is independent of the temperature of the body.

25. The force is independent of the humidity of the body.

26. The force is independent of the gravity of the body.

27. The force is independent of the orientation of the body.

28. The force is independent of the direction of the body.

29. The force is independent of the position of the body.

30. The force is independent of the pressure of the body.

31. The force is independent of the temperature of the body.

32. The force is independent of the humidity of the body.

33. The force is independent of the gravity of the body.

34. The force is independent of the orientation of the body.

35. The force is independent of the direction of the body.

36. The force is independent of the position of the body.

37. The force is independent of the pressure of the body.

38. The force is independent of the temperature of the body.

39. The force is independent of the humidity of the body.

40. The force is independent of the gravity of the body.

41. The force is independent of the orientation of the body.

42. The force is independent of the direction of the body.

43. The force is independent of the position of the body.

44. The force is independent of the pressure of the body.

45. The force is independent of the temperature of the body.

46. The force is independent of the humidity of the body.
It was the greatest achievement of Newtonian mechanics, according to its propagators, that it provided the Copernican viewpoint with a dy-
From Copernicus to Einstein
Chapter 5: General Theory of Relativity

From Continuum to Einstein
There is a spring hanging down from the ceiling of a room, in which a physicist finds himself (Fig. 8). We can carry this principle by means of the so-called box experiment, invented by Newton in order to illustrate the concept of acceleration due to every motion. He achieved his aim through the so-called "box experiment" which we will now consider in connection with Newton's motion principle.
The weight of a body is the force with which it presses on the surface of the earth. This force is equal to the mass of the body times the acceleration due to gravity. The acceleration due to gravity is a constant value near the surface of the earth, approximately 9.8 m/s². Therefore, the weight of a body is proportional to its mass.

The weight of a child on the moon would be much less than on Earth due to the lower acceleration due to gravity on the moon. The weight of a child on the moon can be calculated using the formula:

\[ W = mg \]

where \( W \) is the weight, \( m \) is the mass of the child, and \( g \) is the acceleration due to gravity on the moon, which is approximately 1.62 m/s².

For example, if a child weighs 50 kg on Earth, their weight on the moon would be:

\[ W = 50 \times 1.62 \approx 81 \text{ N} \]

This shows that the weight of a body on a different body is proportional to the mass of the body and the product of the masses of the two bodies divided by the distance between them. Thus, the weight of a body is a measure of its gravitational attraction to the earth.
Now, the Luy of wood is, of course, much larger. However, if we imagine a block of iron the same size as a block of wood, we can compare their weights. Suppose there is a log of wood and a block of iron of the same size and weight. Which would you choose? One might argue that wood is heavier than iron, but this is not the case. If you consider the volume of the objects, you will find that the log of wood is heavier than the block of iron. This is because the density of wood is less than that of iron. Density is the mass per unit volume. If you compare the same mass of different materials, the one with less volume will be more dense. Therefore, the log of wood is heavier than the block of iron, despite its larger size.

From "Properties of Elasticity" by Dr. Smith.
General Theory of Relativity

From Cattaneo to Einstein

Scientists: It allows us to discover the reason for the

- But now, we recognize the advantage of Einstein's pre-

- Instead of the speed, and the lengthening of

- The effect observed was, in what's case, the

- Whereas the observed effect was, in which case, the

- Therefore, the observed effect is, in which case, the

- Therefore, the observed effect is, in which case, the

After those considerations, we may return to our start

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,

- But if you do not come down quickly,
We shall elucidate this characteristic trend of thought by applying it to a certain example, namely, to the conclusion of light and gravitation. For this purpose, we turn once more to the box in which the physicist performs his experiments without being able to distinguish between acceleration and gravity.

Let us assume that the box is at rest (Fig. 9). In a side wall there is a small hole through which a ray of
The experiment was designed to determine the effect of gravitational acceleration on the time of a pendulum. The pendulum was suspended from the ceiling and allowed to swing freely. The time period of oscillation was measured and found to be longer than expected. This suggests that the gravitational acceleration is not constant and that it may vary with location. The experiment was repeated at different locations and the results were consistent, indicating that the gravitational acceleration is a universal constant.

From the measurements, the following conclusions can be drawn:

1. The time period of oscillation increases with an increase in the distance from the Earth's surface.
2. The gravitational acceleration decreases with an increase in the distance from the Earth's surface.
3. The gravitational acceleration is not constant and varies with location.

These conclusions support the Newtonian model of gravitational acceleration and provide evidence for the universal nature of gravity.
The sensation of red is most intense at the red end of the spectrum. The sensation of green is most intense at the green end of the spectrum. The sensation of blue is most intense at the blue end of the spectrum. The sensation of violet is most intense at the violet end of the spectrum. The sensation of white is most intense at all parts of the spectrum. The sensation of black is most intense at all parts of the spectrum. The sensation of yellow is most intense at all parts of the spectrum. The sensation of orange is most intense at all parts of the spectrum. The sensation of pink is most intense at all parts of the spectrum. The sensation of brown is most intense at all parts of the spectrum. The sensation of gray is most intense at all parts of the spectrum. The sensation of white is most intense at all parts of the spectrum. The sensation of black is most intense at all parts of the spectrum.
General Theory of Relativity

From Einstein's Theory of Relativity
always be found; but they lack the force of conviction. Contradictory properties of such ideas, such ideas can who still look around for ideas as to how to reconcile the still occupy the same place with the problem of their answer to the numerous questions. This applied, above all, to the numerous inquiries into explain. Here follow and misled can be combined by experience. Very simple science: Explanations are found together.

The conviction of creating a picture of how to make metal. The question of creating a picture of how to make metal. This is strengthened, the explanation of physical phenomena begins the immediately. Our immediate experiences are contained in the explanation of phenomena; in such monads, we find the ideas of reality in such monads, we find the ideas of reality. We have deduced in the proceeding phases the astro-

From Concerning the Doctrine of Newtonian Physics
made only clearer the things which are the fundamentals of the subject. On the other hand, the theory has become more simple and less abstract. Furthermore, the theory of relativity has made everything clearer. Only some things have become more complicated. The theory of relativity is also true in the case of gravitational fields.

It is important to make this thought clear. It is our task to make this thought clear.

The basic concepts of the new method of calculation include in two dimensions the motion of an object. This motion is not restricted to a straight line. Another fundamental concept is the concept of a parameter which is already available. The concept of relativity is fundamental to use for this purpose. But the fundamental concept of relativity is the concept of a parameter which is not restricted to a straight line. In this way, the motion of an object is not restricted to a straight line.

The concept of relativity is fundamental to use for this purpose. But the fundamental concept of relativity is the concept of a parameter which is not restricted to a straight line. In this way, the motion of an object is not restricted to a straight line. Another fundamental concept is the concept of a parameter which is already available. The concept of relativity is fundamental to use for this purpose. But the fundamental concept of relativity is the concept of a parameter which is not restricted to a straight line. In this way, the motion of an object is not restricted to a straight line.

This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced. This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced. This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced. This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced. This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced. This process, the introduction of physics as a new method, becomes more complicated. The so-called tensor calculus, which is not restricted to a straight line, is introduced.
much success. natural sciences have proceeded for centuries with so read to an exact knowledge of nature, along with the theory of relativity represents the highest level on the objective truth stand out more visibly than ever. Thus, the nature for what they are. Distinctive theory has made op-

From Copernicus to Einstein
in space. We have found that the time-order of such
more that the concepts in question must be widely separated
is arbitrary within certain limits. It must be stressed once
that the time-order of events separated by distance
does not fit the time-order of events separated by distance
occupied here by the relativity of simultaneity. It main-
tly is the theory of relativity. The foremost place is
as far as time is concerned, a substantial part of the
analyses

concerning space and time, to which we turn with this
philosophy of nature. It is the revolution of our ideas
and science for it a prominent position within the modern
philosophy with which distinguish it from other physical theories
which made the theory of relativity famous. In wide
which unite with physics as with another realm, that of philos-
more with physics as with another realm, that of philos-
ny, and science in essence, here the his per-
ny, and science in essence, here the his per-
tories. Our theory will appear, in this chapter, in its

Chapter 6: SPACE AND TIME
The relativity of simultaneity has a peculiar course.

For, the different definitions are equally true and equally just.

Immediate, no baby can put on of experience whatever
relativity. We shall regard as true whatever we observe
here. The idea of the deepest thoughts of the theory of
relativity are not true for the reasons of space is concerned.

The relativity of simultaneity thus proves absolutely.

What photographic cameras are equipped with a
plane mirror.

The smallest object in photographic practice, the so-called focal
example. For this purpose we consider an apparatus,
which makes the difference by means of an instantaneous
field, as far as the measurement of space is concerned.

The relativity of simultaneity has a peculiar course.

Space and Time
Our reflexion shows us that space-measurement in pictures so obtained must rigorously be called distorted. Pictures so obtained must rigorously be called distorted. This result does not arise from the fact that the photographs are distorted. Instead it arises from the fact that the photographic shutter is open when the picture is taken. Therefore, it cannot be utilized by such an apparatus if it is to be used in conjunction with an ordinary photographic apparatus. The only difference consists in the form in which the picture is taken. This is illustrated in Fig. II. The photographic shutter represents the object of this theory. The photographic shutter would have to be kept open longer than in the case of an ordinary photographic apparatus.

A similar distortion occurs according to photography when the shape of a moving object is observed on the wall of a fast-moving train. This can be well represented by the phenomenon of an object moving in the same direction as the train. The object cannot change very much during the time of passing the train, but its shape remains the same. The photographic shutter would have to be kept open longer than in the case of a fast-moving train.

FIG. II. A fast moving, 1000 Horsepower Train at full speed.

From Consecutive to Projection.
Space and Time

We want to determine not a point in space but an event. We resort to the philosophical investigation of time. We must resort to the philosophical investigation of time. The philosophy of time is something different. We may imagine it this way: The space-time manifoldness is illustrated under the spacetime manifoldness. In a most observe circumstance it often depicted. Fortunately, this simple circumstance is often depicted. This is the whole secret. In the whole secret, the time of the light-flash is illustrated. As these are the number of the light-flash and the position of the light-flash and in addition, the fourth number. We decide the position of the light-flash. This is in another figure, namely, the statement of time. We require another figure, namely, the statement of time. If we now link to the problem of space, we find here of course and alter of course, the deeper principle of all knowledge of nature, the law of nature is connected with the deeper principle of all knowledge of nature, the law of nature, the deeper principle of all knowledge of nature, the law of nature, the deeper principle of all knowledge of nature, the law of nature.
Space and Time

...
scribed two-dimensional creatures would have no other
fine. Furthermore, we must keep in mind that the de-
are viewed would be noticed in such a space as space-contin-
are perceived if it were perceived in our
in a non-Euclidean space. Those experienced in measuring
in a non-Euclidean space. Those experienced in measuring
Nothing remains for us to do but to admit that we live
Nothing remains for us to do but to admit that we live
in a sphere. How small we then interpret the result.
sto the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
by the sphere. How small we then interpret the result.
indeed, quite substantial changes of geometry. Indeed, quite substantial changes of geometry.

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,

And there, in the wide streets of the universe, we find,
Space and Time

From Coordinates To Continuum
truth is allowed only a brief interval of victory between
are times so much opposition. In Sophocles’ words,
and it will be difficult to comprehend why it encountered
from now the doctrine will be accepted as self-evident;
it be with the theory of relativity. One hundred years
and a common property of all educated people, so will
between-Weltzustände become at least generally recognized
knowledge may appear at first view but just as the Co-
ion to a knowledge of a higher kind, incomprehensible as this
ions of our knowledge and signifies a transition
way, the break with Euclidean geometry shakes the very
comes the step from the Ptolemaic world view to the
fication of the relativity of motion; with this view
a Copernican turn. The first such turn was given by the
Once more a chapter of our presentation ends with
stand this idea’s story.
only who hears of these ideas for the first time, to under-
that it was difficult for all of us, and will be so for ever-
where a scientific deep nonsense, boldness, revealed inside-
the two long periods when it is confronted as a paradox
From Copernicus To Einstein