Experimental Control

How to avoid threats to validity

I. Introduction: Goals
II. Types of Experimental Control
III. Means of Achieving Control
IV. Summary

I. Introduction: Goals

A. Infer true causal relations
 1. Rule out alternative explanations
 (threats to validity)
 2. Hold “all other things equal”
 constant influence of extraneous factors
I. Introduction: Goals

B. Determine true functional relations
 1. control over the levels of a variable
 2. Hold all else constant

Example: Jenkins & Dallenback (1924)
Memory as a function of retention interval

Jenkins & Dallenback (1924)

Two subjects studied nonsense syllables
They were tested either immediately, 1, 2, 4 or 8 hours later
During the retention interval they either were awake doing daily activities, or they slept.

<table>
<thead>
<tr>
<th>Retention Interval</th>
<th>Sleeping</th>
<th>Awake</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
The retention Curve

If memory is the result of two (or more) processes (STS and LTS), it should show up in the shape of a curve plotting retention as a function of time.

Classic Shape of the curve: (Woodworth, 1938)

\[y = b - m \cdot \ln(t) \]

B. Rubin, Hinton, & Wenzel (1999)

Used a continuous recall task to get a lot of data to precisely model the time course of retention.

The best fitting curve was the sum of three different log functions.

\[recall = a_1 e^{t/1.15} + a_2 e^{t/27.55} + a_3 \]
II. Types of Experimental Control

A. Experimental versus Control groups
 Experimental group: treatment
 Control group: no treatment
 Control group is necessary for a comparison
 Example: use of a computer to aid instruction

B. Control over the levels or values of the independent variable
 Example: the effects of cigarette smoking on the number of colds a person gets in a year
 - must control cigarette smoking

C. Control over the experimental setting
 - preventing extraneous variables
 Example: controlling the noise in an auditory perception experiment
II. Types of Experimental Control

D. Control Variable: a potential independent variable that is held constant across conditions in an experiment.

Example: survey of attitudes toward sexual harassment in the workplace
Control: gender, age, race, etc.

III. Means of Achieving Control

A. Randomization
1. Random selection
 - each person in a population has an equal opportunity to participate in the research.
 - issue external validity of the results
 - not really possible

A. Randomization (cont)
2. Random Assignment:
 - each participant or item has an equal opportunity to be in each treatment condition.
 - easy to accomplish
 - necessary to protect internal validity
A. Randomization (cont)

3. What randomization accomplishes
 a) avoids systematic differences
 b) controls both known and unknown variables.

A. Randomization (cont)

4. Things to randomize:
 - subject assignment to condition
 - use of research materials or items
 (e.g., words in a list)
 - order of treatments
 (e.g., drug, no drug)
 - order of questions on a questionnaire

A. Randomization (cont)

5. How to randomize
 - step 1: assign values to outcomes
 (e.g., heads = females)
 - step 2: create a random series of outcomes
 - flip coins
 - draw cards
 - use a random numbers table
III. Means of Achieving Control

B. Counterbalancing

Definition: A means to systematically vary important control variables so that their influences are equally distributed across conditions.

Insures that each condition precedes and follows each other condition an equal number of times.

Counterbalancing (cont)

Things to counterbalance:
- order of treatments
- order of questions
- position of items
- subject variables (e.g., reading level)
Counterbalancing (cont)

With 2 levels of an independent variable:
Intra-subject counterbalancing:
A B B A

Example: effects of caffeine on reading speed.
Without counterbalancing: Caffeine, No Caffeine
With counterbalancing:
No Caffeine, Caffeine, Caffeine, No Caffeine

Counterbalancing (cont)

Intragroup Counterbalancing:

Group 1: A B
Group 2: B A

Example
Group 1: Caffeine, No Caffeine
Group 2: No Caffeine, Caffeine

Counterbalancing (cont)

With four levels of an independent variable:
A= caffeine
B= cold medicine
C= alcohol
D= no medication
Counterbalancing (cont)

<table>
<thead>
<tr>
<th>Latin Square</th>
<th>Balanced Latin Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D</td>
<td>A B C D</td>
</tr>
<tr>
<td>B C D A</td>
<td>B D A C</td>
</tr>
<tr>
<td>C D A B</td>
<td>C A D B</td>
</tr>
<tr>
<td>D A B C</td>
<td>D C B A</td>
</tr>
</tbody>
</table>

Counterbalancing (cont)

Counterbalancing a subject variable:
(e.g. reading speed)
Rank the subjects: 1, 2, 3, 4, 5, 6, ...
Cond 1: 1, 4, 5, 8
Cond 2: 2, 3, 6, 7

III. Means of Achieving Control

Matching
Definition: A means of controlling a variable by attempting to equate it across conditions.
Matching (cont)

Things to match:
subject variables: IQ, SES, Age, Gender, ...
stimulus variables: word frequency, word length ...
environmental variables: time of day, room ...

Matching (cont)

Matching procedures:
1) Hold the variable constant:
 example: hold reading level constant in drug study.
 problem: limits external validity.

Matching procedures: (cont)

2. Matched Groups:
 hold the average across groups constant
 Example: construct 2 groups that have the same mean reading level
 Problem: may hold the mean constant, but the range and variance may be very different.
Matching procedures: (cont)

3. Incorporate the Variable as an additional independent variable.
Example: Caffeine No Caffeine
Reading level 1
Reading level 2
Reading level 3
Problem: may lead to very large experimental designs.

Matching procedures: (cont)

4. Yoking
Pair subjects or items on an important dimension, and then randomly assign one member of each pair to each condition.

Yoking

Brady (1958) “executive monkey” (an example in yoking)
Monkeys trained to avoid an electric shock by pressing a lever whenever a light came on.
Each press of the lever postponed the shock for 20 sec.
Four pairs of monkeys were paired so that one monkey received the same shock as the “executive” that could avoid the shock.
Brady (1958) “executive monkey”

Results: All four executive monkeys developed ulcers, while none of the yoked monkeys did.

Conclusion: The stress of making decisions caused the ulcers.

And now for the rest of the story!

Executive Monkeys Part Deux

How were the monkeys select for the executive positions?
Monkeys that were easy to train (high responders) were selected as executives. Weiss (1971) demonstrated that high responders were more prone to ulcers than low responders.

Executive Monkeys Part Deux”

Study repeated with the animals equated for activity level.
Animals that had control had less severe ulcers than those that do not have control (Faltz & Millett, 1964; Naletson, 1976)
IV. Summary

A. Goal: to conduct research that is free from threats to validity.
B. This means exercising control over the important variables
C. Primary Means of Achieving that control:
 - randomization
 - counterbalancing
 - matching