On H-linked graphs

Gexin Yu
University of Illinois

Abstract

We introduce the notion of H-linked graphs, where H is a fixed multigraph with vertices w_1, \ldots, w_m. A graph G is H-linked if for every choice of vertices v_1, \ldots, v_m in G, there exists a subdivision of H in G such that v_i is the branch vertex representing w_i (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.

Given k and n, we determine the least integer d such that, for every graph H with k edges, every n-vertex graph with minimum degree at least d is H-linked. This value $D_1(k, n)$ appears to equal the least integer d' such that every n-vertex graph with minimum degree at least d' is k-connected. On the way to the proof, we extend a theorem by Kierstead et al on the least integer d'' such that every n-vertex graph with minimum degree at least d'' is k-ordered. We will also consider the connectivity conditions for a graph to be k-linked in the talk. This is a joint work with Prof. A. Kostochka.