1. Solve the system \(\begin{cases} ax + by = d \\ cx + ay = e \end{cases} \) for \(x \) and \(y \) using Cramer’s Rule.

2. For which values of \(c \) is the matrix \(\begin{bmatrix} c & 0 & c \\ 1 & c & 1 \\ c & 1 & 2 \end{bmatrix} \) singular?

3. The matrix \(A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) has determinant \(|A| = 3 \).

Based on this information, find the values of the following determinants:

\[
\begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g - a & h - b & i - c \end{vmatrix} = \ldots \]
\[
\begin{vmatrix} 2a & 2b & 2c \\ 2(d + a) & 2(e + b) & 2(f + c) \\ 2(g - 3d) & 2(h - 3e) & 2(i - 3f) \end{vmatrix} = \ldots \]

\[
|A^{-1}| = \ldots \]
\[
|A^3| = \ldots \]
\[
|A + A| = \ldots \]

\[
\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = \ldots \]
\[
\begin{vmatrix} d & a & g \\ e & b & h \\ f & c & i \end{vmatrix} = \ldots \]
\[
\begin{vmatrix} a & d & d - 2a \\ b & e & e - 2b \\ c & f & f - 2c \end{vmatrix} = \ldots \]
4. Consider the matrix the matrix \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \).

a. Find the characteristic polynomial of \(A \).

b. Use the characteristic polynomial of \(A \) to show that 2 is an eigenvalue of \(A \).

c. Determine the eigenvector associated with the eigenvalue 2.

5. Prove that a matrix \(A \) is invertible if and only if 0 is not an eigenvalue of \(A \).
6. 100 rats are released in compartment A of a maze (see figure) at time \(t = 0 \).

The rats have been trained to randomly move to an adjacent compartment at the signal of a bell which rings every 15 minutes.

a. Determine the transition matrix \(A \) for the distribution of the rats.

b. Determine the distribution vector \(x \) for the rats, rounded to the nearest integer at time \(t \):

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>150</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>[]</td>
</tr>
</tbody>
</table>

C. Based on the steady state distribution of the rats (at \(t = \infty \)), what eigen information can you give for the transition matrix \(A \) ?

d. If 1000 rats are released in compartment A of the maze at time \(t = 0 \), what would be the steady state distribution of the rats?

e. If 100 rats are released in compartment D of the maze at time \(t = 0 \), what would be the steady state distribution of the rats?
7. Four vaults, A, B, C and D are connected by hallways (see figure). A security guard patrols the vaults as follows: At time \(t = 0 \) the guard is in vault A. Every 30 minutes, the guard randomly chooses a hallway and moves to the next vault.

a. Determine the probability matrix \(A \) for the location of the guard.

b. Determine the probability vector \(x \) for the position of the guard at time \(t \):

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>300</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>[]</td>
</tr>
</tbody>
</table>

Use your calculator to compute \(|A^T + \mathbf{T}| = \)

The result can be expressed as a well known advertising slogan in the cell phone industry: “\(A^T + \mathbf{T} \) is now ___________________”. Sorry.
9. The following information is given about the square matrix \(A \):
\[
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\]
\(A \) are
\(A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \) and
\(A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \).

a. What are the eigenvalues \(\lambda_{1,2,3} \) and eigenvectors \(\{ p_1, p_2, p_3 \} \) of \(A \)?

\(\lambda_1 = \quad , \ p_1 = \quad ; \lambda_2 = \quad , \ p_2 = \quad ; \lambda_3 = \quad , \ p_3 = \quad ; \)

b. If a matrix has real, distinct eigenvalues, what can be said of its eigenvectors?

--.

c. Are the eigenvalues of \(A \) distinct? _______.

Are the eigenvectors independent? _______. Show this.

Is this result in conflict with your statement under (b)? _______. Motivate your answer!

d. Compute the matrix \(A \) from the eigen information.

e. Find a basis for \(E_1 \), the eigen space associated with \(\lambda_1 \)

f. Find a basis for \(E_3 \), the eigen space associated with \(\lambda_3 \)

g. Without a calculator, use the eigeninfo to compute the entries of \(A^{10} \)