Systems of Linear Differential Equations

Math 3120

Differential Equations

Jan Zijlstra
Department of Mathematical Sciences
Middle Tennessee State University

Spring 2007
Consider the system of n linear first order differential equations:

\[
\begin{align*}
\frac{dx_1}{dt} &= a_{11}(t)x_1(t) + a_{12}(t)x_2(t) + \cdots + a_{1n}(t)x_n(t) + f_1(t) \\
\frac{dx_2}{dt} &= a_{21}(t)x_1(t) + a_{22}(t)x_2(t) + \cdots + a_{2n}(t)x_n(t) + f_2(t) \\
&\vdots \\
\frac{dx_n}{dt} &= a_{n1}(t)x_1(t) + a_{n2}(t)x_2(t) + \cdots + a_{nn}(t)x_n(t) + f_n(t)
\end{align*}
\]

In vector notation, this system is written as:

\[
X'(t) = A(t)X(t) + F(t)
\]

where: $X(t) = (x_1(t), x_2(t), \ldots, x_n(t))$ is the position vector, and $X'(t) = (x'_1(t), x'_2(t), \ldots, x'_n(t))$ is the velocity vector,

\[
A(t) = \begin{bmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{bmatrix}
\]

the coefficient matrix and

\[
F(t) = (f_1(t), f_2(t), \ldots, f_n(t))
\]

is the forcing vector or inhomogeneity.

A homogeneous linear system of two equations with constant coefficients,

\[
\begin{align*}
\frac{dx}{dt} &= ax(t) + by(t) \\
\frac{dy}{dt} &= cx(t) + dy(t)
\end{align*}
\]

where a, b, c and d are real constants.

is called a linear plane autonomous system where the term autonomous signifies that the right hand side of the system depends on t only through x and y. In vector form, the system can be written as

\[
\begin{bmatrix}
x'(t) \\
y'(t)
\end{bmatrix} =
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
x(t) \\
y(t)
\end{bmatrix},
\]

or

\[
X' = AX,
\]

where $X = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

with position vector $X(t) = (x(t), y(t))$, and its derivative, the velocity vector $X'(t) = (x'(t), y'(t))$.

Example: The system

\[
\begin{align*}
x'(t) &= x(t) + 2y(t) \\
y'(t) &= -2x(t) + y(t)
\end{align*}
\]

with initial condition $x(0) = 0, y(0) = 2$

is written as

\[
X' = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} X, X(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}
\]
In solving a linear system, we assume both \(x(t) \) and \(y(t) \) to be exponential functions with the same constant, \(\lambda \), in the exponent:

\[
x(t) = k_1 e^{\lambda t} \quad \text{and} \quad y(t) = k_2 e^{\lambda t}
\]

or, in vector form,

\[
X(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} k_1 e^{\lambda t} \\ k_2 e^{\lambda t} \end{bmatrix} = Ke^{\lambda t}
\]

The reason for choosing the common constant, \(\lambda \) in the exponent is the ensuing cancellation of the exponentials upon substitution of this exponential form into the system \(X' = AX \)

\[
\lambda Ke^{\lambda t} = AKe^{\lambda t},
\]

which gives rise to the eigenvalue/eigenvector equation: \[AK = \lambda K \]

This, in turn, leads to the system \((A - \lambda I)K = 0\). Using the fact that system with zero right hand side \(AX=0 \) has non-trivial solutions if and only if \(\det(A) = 0 \), we obtain the characteristic equation:

\[
\det(A - \lambda I) = 0
\]

The values for the constant \(\lambda \), called the eigenvalues (or proper values) of the matrix \(A \), can be computed as the roots of the characteristic polynomial \(p(\lambda) \):

\[
\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0 \Rightarrow (a - \lambda)(d - \lambda) - bc = 0 , \quad \text{or} \quad p(\lambda) = \lambda^2 - (a + d)\lambda + (ad - bc) = 0.
\]

The eigenvalues \(\lambda \) are the solutions of this quadratic equation and can be real and distinct, or a pair of conjugate complex numbers or, in the case of a zero discriminant, a double real eigenvalues may occur. Each distinct eigenvalue \(\lambda \) has a corresponding eigenvector \(K \) which may be found by substituting the eigenvalue into the equation \(AK = \lambda K \), and solving for the entries of \(K \):

\[
AK_1 = \lambda_1 K_1 \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} = \lambda_1 \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} \Rightarrow (a - \lambda_1)k_{11} + bk_{12} = 0
\]

(Note that the second equation that arises: \(ck_{11} + (d - \lambda_1)k_{12} = 0 \) must lead to the same equation, since we required \(\det(A - \lambda_1 I) \) to be zero). Therefore, a possible choice for the entries of the eigenvector \(K_1 \) would be \(k_{11} = b \) and \(k_{12} = (\lambda_1 - a) \).

Thus, two solutions arise \(X_{1,2} = K_{1,2} e^{\lambda_{1,2}t} \), corresponding to distinct eigenvalues \(\lambda_{1,2} \).

Definition: The vectors \(X_1, X_2, \ldots, X_n \) are linearly independent if and only if

\[
c_1X_1 + c_2X_2 + \ldots + c_nX_n = 0 \quad \text{if and only if} \quad c_1 = c_2 = \ldots = c_n = 0
\]

Solutions that are not linearly independent are said to be linearly dependent.

Note that, if the solutions \(X_1, X_2, \ldots, X_n \) are linearly dependent then there exist \(c_1, c_2, \ldots, c_n \) not all zero for which \(c_1X_1 + c_2X_2 + \ldots + c_nX_n = 0 \). This means that any one solution, say \(X_2 \), can be written as a linear combination of the other solutions.
FACT: Solutions \(X_{1,2} = K_{1,2} e^{\lambda_{1,2} t} \) corresponding to distinct eigenvalues \(\lambda_{1,2} \) are linearly independent.

PROOF: Suppose the solutions \(X_1, X_2 \) are not linearly independent. Then there exist \(c_1, c_2 \) not both zero for which \(c_1 X_1 + c_2 X_2 = 0 \), or

\[
c_1 \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} e^{\lambda_1 t} + c_2 \begin{bmatrix} k_{21} \\ k_{22} \end{bmatrix} e^{\lambda_2 t} = 0,
\]

Component wise, this means that

\[
c_1 k_{11} e^{\lambda_1 t} + c_2 k_{21} e^{\lambda_2 t} = 0.
\]

Differentiation of this equation gives the system

\[
\begin{align*}
c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} &= 0, \\
c_1 \lambda_1 e^{\lambda_1 t} + c_2 \lambda_2 e^{\lambda_2 t} &= 0,
\end{align*}
\]

which is a contradiction, since the eigenvalues are distinct. Therefore, the assumption is false and the solutions \(X_1, X_2 \) are linearly independent.

THEOREM: Let \(X_1 \) and \(X_2 \) are linearly independent solutions of the 2×2 linear system \(X'(t) = AX(t) \),

The general solution of this system is a linear combination of these solutions:

\[X(t) = c_1 X_1 + c_2 X_2 \]

PROOF: We need to show that if \(Y(t) \) is any non-trivial solution of the system \(X'(t) = AX(t) \), then there exist unique constants \(c_1 \) and \(c_2 \) such that \(Y(t) = c_1 X_1 + c_2 X_2 \).

Equating \(Y(t) = c_1 X_1 + c_2 X_2 \),

\[Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = c_1 \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} e^{\lambda_1 t} + c_2 \begin{bmatrix} k_{21} \\ k_{22} \end{bmatrix} e^{\lambda_2 t}. \]

gives

\[
\begin{bmatrix} k_{11} e^{\lambda_1 t} & k_{21} e^{\lambda_2 t} \\ k_{12} e^{\lambda_1 t} & k_{22} e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}.
\]

This system has non-zero right hand side \(y_1(t) \) or \(y_2(t) \neq 0 \), since \(Y(t) \) is a non-trivial solution. Unique values for the constants \(c_1 \) and \(c_2 \) therefore exist if and only if the determinant of the matrix is non-zero:

\[
det \begin{bmatrix} k_{11} e^{\lambda_1 t} & k_{21} e^{\lambda_2 t} \\ k_{12} e^{\lambda_1 t} & k_{22} e^{\lambda_2 t} \end{bmatrix} = (k_{11} k_{22} - k_{12} k_{21}) e^{(\lambda_1 + \lambda_2) t} \\ = 0.
\]

Since an exponential is always non-zero, this leads to the requirement

\[(k_{11} k_{22} - k_{12} k_{21}) \neq 0,\]

a condition which is satisfied if \(K_1 \) and \(K_2 \) are linearly independent eigenvectors. \(\Box \)
The case of complex eigenvalues

In case the characteristic polynomial for the problem $X' = AX$ has complex conjugate roots: $\lambda = \alpha \pm \beta i$, the eigenvectors may be obtained by substitution:

$$AK_1 = \lambda_i K_1 \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} = \lambda_{i1} \begin{bmatrix} k_{11} \\ k_{12} \end{bmatrix} \Rightarrow (a - (\alpha + \beta i))k_{11} + bk_{12} = 0,$$

from which the entries of eigenvector K_1 may be chosen as $k_{11} = b, \quad k_{12} = (\alpha - a) + \beta i$,

so K_1 can be written as $K_1 = \begin{bmatrix} b \\ \alpha - a \end{bmatrix} + \begin{bmatrix} 0 \\ \beta \end{bmatrix} = B_0 + B_1i$.

Similarly, K_2 can be written as $K_2 = \begin{bmatrix} b \\ \alpha - a \end{bmatrix} - \begin{bmatrix} 0 \\ \beta \end{bmatrix} = B_0 - B_1i$.

Substituting the eigenvalues and eigenvectors into the general solution:

$$X(t) = C_1 X_1(t) + C_2 K_2 = C_1 K_1 e^{\lambda_{1}t} + C_2 K_2 e^{\lambda_{2}t}$$

we get

$$X(t) = C_1(B_0 + B_1i)e^{(\alpha + \beta i)t} + C_1(B_0 - B_1i)e^{(\alpha - \beta i)t}$$

$$= e^{\alpha t}(C_1(B_0 + B_1i)e^{\beta t} + C_1(B_0 - B_1i)e^{-\beta t})$$

Using Euler's formula: $e^{\alpha i} = \cos \theta + i \sin \theta$,

$$X(t) = e^{\alpha t}(C_1(B_0 + B_1i)(\cos \beta t + i \sin \beta t) + C_1(B_0 - B_1i)(\cos \beta t - i \sin \beta t))$$

and, collecting terms,

$$X(t) = e^{\alpha t} \left(\frac{(C_1 + C_2)(B_0 \cos \beta t - B_1 \sin \beta t) + (C_1 - C_2)i(B_1 \cos \beta t + B_0 \sin \beta t)}{C_1} \right)$$

The summary form for the general solution can be written as:

$$X(t) = C_2 X_2(t) + C_2 X_2(t)$$

where

$$X_1(t) = e^{\alpha t}(B_0 \cos \beta t - B_1 \sin \beta t) \quad \text{and} \quad X_2(t) = e^{\alpha t}(B_0 \sin \beta t + B_1 \cos \beta t)$$
The Case of the Repeat Eigenvalue.

Theorem: If the system $X' = AX$ has a double real eigenvalue λ with single eigenvector K, a second independent solution $X_2 = (Kt + P)e^{\lambda t}$ may be obtained (in addition to the solution $X_1 = Ke^{\lambda t}$) by setting $(A - \lambda I)P = K$.

Proof: For $X_2 = (Kt + P)e^{\lambda t}$ to solve the system $X' = AX$, we require

$$X_2' = AX_2$$

or

$$Ke^{\lambda t} + K\lambda te^{\lambda t} + Pe^{\lambda t} = AKte^{\lambda t} + APe^{\lambda t}.$$ Collecting terms,

$$(A - \lambda I)Kte^{\lambda t} + (AP - \lambda IP - K)e^{\lambda t} = 0$$

for all values of t in the domain.

Since K is an eigenvector of A with eigenvalue λ, we know that

$$(A - \lambda I)K = 0$$

leaving as the only condition

$$(A - \lambda I)P = K.$$ To show that the solutions X_1 and X_2 thus obtained are indeed linearly independent, we look at the determinant of the solution matrix:

$$\det[X_1|X_2] = \det[Ke^{\lambda t}|Kte^{\lambda t} + Pe^{\lambda t}] = e^{\lambda t}(k_1p_2 - k_2p_1) \neq 0,$$

since P and K are linearly independent.

Linear independence (LI) of the vectors P and K follows from the requirement $(A - \lambda I)P = K$: Suppose P and K are not LI, that is, one is a scalar multiple of the other. Then there exists c such that $P = cK$. Then the requirement $(A - \lambda I)P = K$ leads to:

$$c(A - \lambda I)K = K$$

so

$$(A - (\lambda + 1/c) I) K = 0$$

that is, $\lambda + 1/c$ is an eigenvalue associated with the vector K. This contradicts the fact that λ is the only eigenvalue for K. Hence P and K are independent, so $(k_1p_2 - k_2p_1) \neq 0$ and the solutions X_1 and X_2 are linearly independent. \qed
PROGRAM: EVAL

AUTHOR: Jan Zijlstra, MTSU.

PURPOSE: to compute the eigenvalues and eigenvectors of a real matrix A.

PLATFORM: Texas Instruments TI 82/83 graphing calculator

DEFINITION: An eigenvector of a matrix A is a vector which, when multiplied by A, yields a scalar multiple (the eigenvalue, \(\lambda \)) of itself: \(AK = \lambda K \)

\[
\text{Input: entries of the real constant matrix } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},
\]

\[
\text{Output: the eigenvalues } \lambda_1 \text{ and } \lambda_2, \text{ and the corresponding eigenvectors } K_1 \text{ and } K_2
\]

PROGRAM EVAL

\[
\begin{align*}
/& \text{:Prompt A} \\
/& \text{:Prompt B} \\
/& \text{:Prompt C} \\
/& \text{:Prompt D} \\
/& \text{:STO} \\
/& \text{:Disp "REAL EVALS"} \\
/& \text{:S-T/2 L} \\
/& \text{:S+T/2 M} \\
/& \text{:Disp L,M} \\
/& \text{:Disp "EVECTS"} \\
/& \text{:Disp \{B,L-A\}} \\
/& \text{:Disp \{B,M-A\}} \\
/& \text{:If T>0} \\
/& \text{:THEN} \\
/& \text{:Disp "REAL EVALS"} \\
/& \text{:Disp S} \\
/& \text{:Disp \{S-D,C\}} \\
/& \text{:Disp \{B,S-A\}} \\
/& \text{:Else} \\
/& \text{:Disp "DOUBLE EVAL"} \\
/& \text{:Disp \{-T/2\}} \\
/& \text{:Disp \{B,S-A\}} \\
/& \text{:Disp "REAL EVECS B0"} \\
/& \text{:Disp \{B,S-A\}} \\
/& \text{:Disp "CPLX EVECS B1"} \\
/& \text{:Disp \{0, \{-T/2\}\}} \\
\end{align*}
\]

Command Locations

Prompt: pgrm ctl

If: prgm ctl; >: 2nd test

THEN: prgm ctl

Disp: prgm I/O

Else: prgm ctl