PROGRAM: NEWTON
AUTHOR: Jan Zijlstra, Middle Tennessee State University.
PURPOSE: To compute the value of a zero (root) of a function $f(x)$.
PLATFORM: Texas Instruments TI 82/83 graphing calculator

DEFINITION: $x = r$ is a root or zero of a function $f(x)$ means that $f(r) = 0$. The program implements Newton's method to approximate the root of a function $f(x)$. The derivative is approximated by a centered difference (CDQ):

$$x_{\text{new}} = x_{\text{old}} - \frac{f(x_{\text{old}})}{f'(x_{\text{old}})} \approx x_{\text{old}} - \frac{f(x_{\text{old}} + h) - f(x_{\text{old}} - h)}{2h}$$

which is applicable to any continuous, differentiable function. On the TI calculator, the CDQ is available as the nDeriv command.

Input: The function $f(x)$ is stored in y_1 prior to running the program.

Output: the approximate value of the root, stored in A

Note: For the program to successfully determine the value of a root of $f(x)$ make sure that:
- the function actually has a root by graphing $f(x)$
- and that both the function and its derivative exist on the interval of interest. Particularly, vertical slopes can be a problem.

PROGRAM NEWTON

```
:Prompt X
:X-y_1(X)/nDeriv(y_1(X),X,X)→A
:While Abs(X-A)>1EE-8
:A→X
:X-y_1(X)/nDeriv(y_1(X),X,X)→A
:Disp A
:End
:Stop
```

Command Locations

- Prompt: prgm I/O
- Sto: Sto
- While: Prgm Ctl
- nDeriv: Math 8
- Disp: Prgm Ctl
- End: Prgm Ctl
- Stop: Prgm Ctl

EXAMPLE: To solve the equation $3^x = 5x$ for x, we need to determine the root of the function $f(x) = 3^x - 5x$. (Answers: start with $x=0$: 0.26866911 and start with $x=2$: 2.17027659. The equation has two solutions.

EXAMPLE: To solve the equation $x^4 - 4x^2 = x - 2$ for x, we need to determine the root of the function $f(x) = x^4 - 4x^2 - x + 2$, (check graphically that there are four distinct real roots!).
start with $x=-2$: -1.65121076
start with $x=-1$: -1 (bingo!)
start with $x=0$: 2
start with $x=2$: 0.61803399. The equation has four solutions.