Introduction to the MAPLE Computer Algebra System.
Jan Zijlstra, Middle Tennessee State University.

Part 4: The Rate of Change of a Function.

The rate at which the value of a function f changes with its input over an interval $[a,b]$, is called the **Average Rate of Change (AROC)** of f on $[a,b]$:

$$ AROC[a,b] = \frac{f(b) - f(a)}{b - a} $$

The **Instantaneous Rate of Change (IROC)** of a function at a point $x = a$ results from letting the width of the interval, $h = b-a$, approach 0:

$$ IROC(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} $$

Taken at any point x, the $IROC(x)$ is often referred to as the **derivative** (function) of f.

AROC: The Average Rate Of Change of a function

An *average rate of change* of a function f on the interval $[a,b]$:

defined as: $AROC[a,b] = (f(b)-f(a))/(b-a)$

is now straightforward to compute:

```maple
> f:=x->x^2-3*x+2;

> AROC:=(f(4)-f(2))/(4-2);
```

Graphically, the AROC is the slope of the secant line.

It is convenient to write a procedure for repeated tasks.

Here's one that graphs a function along with the secant line on an indicated interval:

```maple
> secant_line:=proc(f,a,b) local ff,m,c,p1,p2;
    ff:=unapply(f,x);
    m:= (ff(b)-ff(a))/(b-a):
    c:= ff(b)-m*b:
    plot([f,m*x+c],x=(a-1)..(b+1),color=[blue,red]):
end:
```

Let's try it for $f(x) = x^2 - 3x + 2$ on the interval $[-1,2]$:

```maple
> secant_line(x^2-3*x+2,-1,2);
```

IROC: The Instantaneous Rate Of Change of a function

The *instantaneous rate of change* at $x = a$ given by

$$ IROC(a) = \lim_{b \to a} \frac{(f(b) - f(a))}{(b - a)} $$

or, equivalently, with $b = a + h$

$$ IROC(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} $$

can be computed, too, as the limit of the Forward Difference Quotient $(f(a + h) - f(a)) / h$:

```maple
> FDQ:= (f(2+h)-f(2))/h;
```

which can be simplified:

```maple
> simplify(FDQ);
```

So the IROC can be found as the limit of this quantity as h approaches 0:
IROC := limit(FDQ, h = 0);

Graphically, the IROC is the slope of the tangent line.
It is convenient to write a procedure for this task, too.
Here's one that graphs a function along with the tangent line on an indicated interval:

> tangent_line := proc(f, a)
local ff, h, m, c, p1, p2;
ff := unapply(f, x);
h := 0.0001:
m := (ff(a + h) - ff(a - h)) / (2 * h):
c := ff(a) - m * a:
plot([f, m * x + c], x = (a - 2) .. (a + 2), color = [blue, red]):
end:

Let's try it for \(f(x) = x^2 - 3x + 2 \) on the interval \([-1, 2]\):

> tangent_line(x^2-3*x+2,-1);

Exercises:

1. If \(f(x) \) is given as \(x/(1-x) \), compute and simplify the quantity \((f(a + h) - f(a))/h \)
 Use the result to compute \(IROC(a) \).
 Give a graphical interpretation of the quantity \(IROC(2) \)

2. Compute the average rate of change of the function \(g(x) = x(4 - x) \) on the interval \([1, 1 + c]\)
 for \(c = 2, c = 1, c = 0.1 \) and \(c = 0.0001 \).
 What is the value of the limit of \(AROC[1, 1 + c] \) as \(c \) approaches zero?
 What is the meaning of this quantity?

3. Construct a function (procedure) that has value 1 for any input between 0 and 1 (inclusive) and has
 the value 0 anywhere else.

4. Graph the Forward Difference Quotient for the function \(f(x) = x/(x-1) \) at \(x = 2 \) as a function of \(h \)
 From this graph, what value does the function \(FDQ(h) \) take on as \(h \) approaches 0?
 What is the exact value of the limit of \(FDQ(h) \) as \(h \) approaches 0?
 What, then, is the value of the instantaneous rate of change of \(f \) at \(x = 2 \) (\(IROC(2) \))?