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Abstract— This paper studies an optimal ON-OFF scheduling
problem for a class of discrete event systems with real-time
constraints. Our goal is to minimize the overall costs, including
the operating cost and the wake-up cost, while still guaranteeing
the deadline of each individual task. In particular, we consider
the homogeneous case in which it takes the same amount of
time to serve each task and each task needs to be served by d
seconds upon arrival. The problem involves two subproblems:
(i) finding the best time to wake up the system and (ii) finding
the best time to let the system go back to sleep. With the first
subproblem studied previously, we focus on the second one
in this paper. In particular, we consider the off-line control
scenario that all task information is known to us a priori. We
show that dynamic programming can be used to calculate the
optimal schedule.

Index Terms— discrete event systems, real-time systems,
quality-of-service, optimization

I. INTRODUCTION

There exists a large amount of Discrete Event Systems
(DESs) that involve allocation of resources to satisfy real-
time constraints. One commonality of these DESs is that
certain tasks must be completed by their deadlines in order to
guarantee Quality-of-Service (QoS). Examples arise in wire-
less networks and computing systems, where communication
and computing tasks must be transmitted/processed before
the information they contain becomes obsolete [1] [2], and
in manufacturing systems, where manufacturing tasks must
be completed before the specified time in the production
schedule [3]. Another commonality of these DESs is that
they all require the minimization of cost (e.g., energy).
An interesting question then arises naturally: how can we
allocate resources to such DESs so that the cost is minimized
and the real-time constraints are also satisfied? To answer
this question, one often has to study the trade-off between
minimizing the cost and satisfying the real-time constraints:
processing the tasks at a higher speed makes it easier to
satisfy the real-time constraints and harder to reduce the cost;
conversely, processing the tasks at a lower speed makes it
harder to satisfy the real-time constraints and easier to reduce
the cost. This trade-off is often referred to as the energy-
latency trade-off and has been widely studied in the literature
[1] [4] [5].

In this paper, our objective is also to utilize the energy-
latency trade-off to minimize the cost while guaranteeing
the real-time constraint for each task. Different from most
existing papers that assume the system’s service rate (the
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control variable) is either a continuous function of time or
a value from a discrete set of multiple rates, we assume
that the DES only operates at one of the two states: ON and
OFF. One motivating example of such DES is wireless sensor
networks, in which operation simplicity must be maintained.
For example, the radio of a ZigBee wireless device can either
be completely off or transmitting at a fixed-rate, e.g., 250kb/s
in the 2.4GHz band. Another difference between this paper
and others is that we assume that a wake-up cost is incurred
whenever the system transits from the OFF state to the ON
state.

In this paper, we restrict ourselves to off-line control where
task information is known to us a priori. Our main contri-
bution is that we show dynamic programming can be used
to obtain the optimal ON-OFF schedule. The organization of
the rest of the paper is the following: in Section II, we discuss
related work; we then formulate our problem in Section III;
the main results are discussed in Section IV; finally, we
conclude and discuss future work in Section V.

II. RELATED WORK

There are two lines of work that are closely related to this
paper. One is transmission scheduling for wireless networks,
in which the transmission rate of a wireless device is adjusted
so as to minimize the transmission cost and satisfy real-
time constraints. This line of work is initially studied in
[6] with follow-up work in [4] where a homogeneous case
is considered, assuming all packets have the same deadline
and number of bits. By identifying some properties of this
convex optimization problem, Gamal et al. propose the
“MoveRight” algorithm in [4] to solve it iteratively. However,
the rate of convergence of the MoveRight algorithm is only
obtainable for a special case of the problem when all packets
have identical energy functions; in general the MoveRight
algorithm may converge slowly. Zafer et al. [7] study an
optimal rate control problem over a time-varying wireless
channel, in which the channel state was modeled as a Markov
process. In particular, they consider the scenario that B units
of data must be transmitted by a common deadline T, and
they obtain an optimal rate-control policy that minimizes the
total energy expenditure subject to short-term average power
constraints. In [8] and [9], the case of identical arrival time
and individual deadline is studied by Zafer et. al. In [10], the
case of identical packet size and identical delay constraint is
studied by Neely et. al. They extend the result for the case
of individual packet size and identical delay constraint in
[11]. In [5], Zafer et. al. use a graphical approach to analyze
the case that each packet has its own arrival time and dead-



line. However, there are certain restrictions in their setting;
for example, the packet that arrives later must have later
deadlines. Wang and Li [12] analyze scheduling problems
for bursty packets with strict deadlines over a single time-
varying wireless channel. Assuming slotted transmission and
changeable packet transmission order, they are able to exploit
structural properties of the problem to come up with an
algorithm that solves the off-line problem. In [13], Poulakis
et. al. also study energy efficient scheduling problems for a
single time-varying wireless channel. They consider a finite-
horizon problem where each packet must be transmitted
before Dmax. Optimal stopping theory is used to find the
optimal start transmission time between [0, Dmax] so as to
minimize the expected energy consumption and the average
energy consumption per unit of time. Zhong and Xu [14]
formulated optimization problems that minimize the energy
consumption of a set of tasks with task-dependent energy
functions and packet lengths. In their problem formulation,
the energy functions include both transmission energy and
circuit power consumption. To obtain the optimal solution
for the off-line case with backlogged tasks only, they develop
an iterative algorithm RADB whose complexity is O(n2) (n
is the number of tasks). The authors show via simulation
that the RADB algorithm achieves good performance when
used in on-line scheduling. [1] studies a transmission control
problem for task-dependent cost functions and arbitrary task
arrival time, deadline, and number of bits. They propose a
GCTDA algorithm that solves the off-line problem efficiently
by identifying certain critical tasks. Our model is different
from all the above works by including a wake-up cost at
each time instant that the system transitions from OFF to
ON state.

The other line of research studies On-OFF scheduling in
Wireless Sensor Networks (WSNs). Solutions in the Medium
Access Control (MAC) layer, such as the S-MAC protocol
[15], have been developed to coordinate neighboring sensors’
ON-OFF schedule in order to reduce both energy consump-
tion and packet delay. These approaches do not provide
specific end-to-end latency guarantee. In [16], routing prob-
lems are considered in WSNs where each sensor switches
between ON and OFF states. The authors formulate an
optimization problem to pick the best path that minimizes the
weighted sum of the expected energy cost and the exponent
of the latency probability. In another work in [17], Ning and
Cassandras formulate a dynamic sleep control problem in
order to reduce the energy consumed in listening to an idle
channel. The idea is to sample the channel more frequently
when it is likely to have traffic and less frequently when it
is not. The authors extend their work in [18], by formulating
an optimization problem with the goal of minimizing the
expected total energy consumption at the transmitter and the
receiver. Dynamic programming is used to come up with
an optimal policy that is shown to be more effective in
cost saving than the fixed sleep time. [19] studies the ON-
OFF scheduling in wireless mesh networks. By assuming
a fixed routing tree topology used for task transmission,
each child in the tree knows exactly when its parents will

wake up, and the traffic is only generated by the leaves of
the tree, the authors formulate and solve an optimization
problem that minimizes the total transmission energy cost
while satisfying the latency and maximum energy constraints
on each individual node. The major difference between this
paper and the existing ones in this line of research is that we
study a system with a real-time constraint for each individual
task. To the best of our knowledge, ON-OFF scheduling with
a real-time constraint for each individual task has not been
studied extensively.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a finite horizon scenario that
a DES processes N tasks with real-time constraints. In
particular, task i, i = 1, . . . , N, has arrival time ai (generally
random), deadline di = ai+d, and B number of operations.
Both d and B are constants. In the off-line setting, we assume
that the task arrival time ai is known to the controller a priori.
The DES can only operate in one of the two modes: ON and
OFF. When it is in the OFF mode, there is no operating cost
associated. When it is in the ON or active mode, the system
processes the tasks at a constant rate R. The operating cost
of the system when it is active is assumed to be Ca per unit
time, regardless of if it is serving tasks or idling; such an
assumption is valid in systems in which most of the operating
cost exists even when the system is idling. We also assume
that whenever a transition from the OFF mode to the ON
mode occurs, a fixed wake-up cost Cw is incurred; examples
of such costs include: the large amount of current (known
as inrush current) required when a motor is turned on, the
energy needed to initialize electric circuits when RF radio
is turned on in a wireless device, and so on. Note that the
wake-up cost may also include system wearout cost, if the
system can only be turned on for certain number of times
during its lifetime.

We now formulate the off-line optimization problem, in
which the objective is to find the optimal service rate r(t) that
completes all the tasks by their deadlines and also minimizes
the cost. Note that r(t) is piecewise constant and can only
be either 0 or R. See Fig. 1 for an illustration.
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Fig. 1: Off-line control illustration.

We give the following definition:
Definition 1: Suppose the system is woken up at t1, put

to sleep at t2 (t1 < t2), and kept active from t1 to t2. Then,
we call the time interval [t1, t2] an Active Period (AP).

We now introduce the control variables. Our first control
variable is β, the number of APs. The second control variable



is a β × 2 array t that contains 2β time instants. These time
instants satisfy:

ti,1 < ti,2 < tj,1 < tj,2, ∀i, j ∈ {1, . . . , β}, i < j

and define β APs. The off-line problem can then be formu-
lated:

Q(1, N) : min
β,t

βCw +

β∑
i=1

Ca(ti,2 − ti,1)

s.t.
∫ xj

max(aj ,xj−1)

r(t)dt = B,

xj ≤ dj , x0 = 0, j = 1, . . . , N

r(t) = R

β∑
i=1

[u(t− ti,1)− u(t− ti,2)]

where xj is the departure time of task j and u(t) is the unit
step function.

Notice that Q(1, N) above may not always be feasible.
Consider the case that N tasks arrive at the same time and
need to be transmitted in d seconds. In order to meet the
deadlines of all the tasks, we must have R ≥ NB

d . Since
R is a constant, the condition above obviously is not true
when N is large. In this paper, we only consider the case
that Q(1, N) is indeed feasible, and we have the following
assumption on the task arrival rate.

Assumption 1: Within any time interval of d seconds, the
number of task arrivals must not exceed bdθ c, where θ =
B/R is the time it takes to process a single task.

We emphasize that d in Assumption 1 is the deadline
of each task upon arrival. To make the problem more
interesting, we also assume that bdθ c > 1.

Problem Q(1, N) has been partially analyzed in [20], in
which we utilize the structural properties of the optimal
sample path to come up with the optimal wake-up time of
an AP. We now summarize the results obtained in [20]:

1. Under assumption 1, Q(1, N) is always feasible
(Lemma 3.1).

2. In off-line control, the optimal wake-up time to start
an AP on the optimal sample path can be calculated easily
using simple algebra (Lemmas 4.2 and 4.3).

3. In on-line control, the optimal wake-up time to start an
AP on the optimal sample path can be determined iteritively
using the newly available task arrival information, i.e., the
on-line and off-line control yield the same optimal wake-up
time for an AP on the optimal sample path (Lemma 5.1).

In this paper, we turn our attention to finding out the time
to end an AP (put the device to sleep) on the optimal sample
path.

IV. MAIN RESULTS

Let us emphasize that in this section, we discuss the off-
line setting in which all task arrival information ai is known
to us a priori. In particular, we need to find out when the
system should go to sleep. Apparently, the optimal time
to end an AP depends on future task information. In what

follows, we first establish some results that identify the end
of an AP based on future task arrival information.

Lemma 4.1: If dj + Cw/Ca < aj+1, j ∈ {1, . . . , N −
1}, then task j ends an AP on the optimal sample path of
Q(1, N).

Proof: We use x∗j and s∗j+1 to denote the departure time
of task j and the starting time of task j + 1, respectively,
on the optimal sample path of Q(1, N). Using Lemma 1 in
[20], we have

x∗j ≤ dj (1)

From casualty,
s∗j+1 ≥ aj+1 (2)

By assumption, we have

aj+1 − dj > Cw/Ca (3)

Combining (1), (2), and (3), we get

s∗j+1 − x∗j > Cw/Ca (4)

Next, we use a contradiction argument to prove the lemma.
Let the optimal sample path of Q(1, N) be sp∗ and the corre-
sponding cost is J∗. Suppose that task j does not end an AP
on sp∗. It means that the system stays active from x∗j to s∗j+1.
The optimal cost is then J∗ = (s∗j+1 − x∗j )Ca + JR, where
JR is the rest of the cost beyond time interval [x∗j , s

∗
j+1].

Consider another sample path sp
′
, which is identical to sp∗,

except that the system goes to sleep at x∗j and wakes up at
s∗j+1. The system cost is now J

′
= Cw+JR. Using (4), we

obtain J
′
< J∗, which contradicts the assumption that sp∗

is the optimal sample path. �
Lemma 4.1 basically indicates that if the deadline of task

j is at least Cw/Ca seconds apart from the next task arrival,
then task j ends an AP on the optimal sample path. Note
that this is just a sufficient, but not necessary condition of
an AP ending on the optimal sample path. In some cases,
whether a task should end an AP is determined by not only
the next arrival, but also all subsequent ones. Let d0 = −∞
and aN+1 =∞. We introduce the following definition.

Definition 2: Consecutive tasks {k, . . . , n}, 1 ≤ k ≤
n ≤ N, belong to a super active period (SAP) in problem
Q(1, N) if dk−1 +Cw/Ca < ak, dn+Cw/Ca < an+1, and
dj + Cw/Ca ≥ aj+1, ∀j ∈ {k + 1, . . . , n− 1}.

Each SAP contains one or more APs. SAPs can be easily
identified by simply examining all the task deadlines and
arrival times and applying Lemma 4.1. It implies that instead
of working on the original problem Q(1, N), we now only
need to focus on each SAP, which is essentially a subproblem
of Q(k, n).

We now define our decision points in each SAP. A decision
point xt, t ∈ {k, . . . , n− 1}, is the departure time of task t
satisfies xt < at+1. If xt ≥ at+1, then xt is not a decision
point because the system should stay active at xt and process
task t+ 1. At each decision point, the control is letting the
system either go to sleep or stay awake. Let us take a look
at some examples, in which d = 10, Cw = 10, and Ca = 1.
We also assume that B = R, i.e., it takes a unit of time



to complete a task. Fig. 2 and Fig. 3 show two different
sample paths for a simple two-task scenario: a1 = 0 and
a2 = 19. In both sample paths, task 1’s optimal wake up
time is determined by Lemmas 4.2 and 4.3 in [20]. The only
decision point is x1, at which the system needs to decide if
it should go to sleep or stay awake. In particular, the system
in Fig. 2 wakes up at t1 = 9, finishes task 1 at its deadline
d1 = 10, stays awake, and finishes task 2 at t2 = 20. The
total cost is: Cw + Ca(t2 − t1) = 21. In Fig. 3, the system
wakes up at t1 = 9, finishes task 1 at its deadline d1 =
t2 = 10, and goes to sleep. Then, it wakes up at t3 = 28
(once again determined by Lemms 4.2 and 4.3 in [20]) and
finishes task 2 at t4 = 29. The total cost of this case is:
2Cw + Ca[(t2 − t1) + (t4 − t3)] = 22. It is evident that
at decision point x1 = 10, the optimal control is to let the
system stay awake (shown in Fig. 2).
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Fig. 2: Sample path #1 of scenario #1.
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Fig. 3: Sample path #2 of scenario #1.

Now, let us consider another scenario (Fig. 4 and Fig. 5),
in which we keep the previous tasks 1 and 2 unchanged and
add task 3. Our first decision point is again at x1 = 10. In
Fig. 4, the system wakes up at t1 = 9, finishes task 1 at
its deadline d1 = 10, stays awake, finishes task 2 at time
20, stays awake, and finally finishes task 3 at time t2 = 30.
The total cost is: Cw + Ca(t2 − t1) = 31. In Fig. 5, the
system wakes up at t1 = 9, finishes task 1 at its deadline
d1 = t2 = 10, and goes to sleep. Then, it wakes up at
t3 = 28 and finishes tasks 2 and 3 at t4 = 30. The total cost
of this case is: 2Cw + Ca[(t2 − t1) + (t4 − t3)] = 23. It is
evident that at decision point x1 = 10, the optimal control
is to let the system go to sleep (shown in Fig. 5).

From the above examples, we can conclude that the
optimal decision on if the system should stay awake or
go to sleep when it finishes all on-hand tasks depends on
future task arrivals (task 3 in the examples above). A first
look at the problem seems to suggest that in the worst case,
the system may have to make a decision about if it should
go to sleep or stay awake after each task departure; the
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Fig. 4: Sample path #1 of scenario #2.
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Fig. 5: Sample path #2 of scenario #2.

total number of possible sample paths could be as high as
2N , which makes the problem intractable when N is large.
However, a closer look at the problem indicates that the
off-line optimal ON-OFF control problem can be solved by
dynamic programming.

Definition 3: In problem Q(k, n), where tasks {k, . . . , n}
form an SAP, the first task of any AP is called a starting
task. Tasks that are not starting tasks are known as following
tasks.

Since the case that k = n is trivial, we assume that k < n
in our analysis in order to make the problem more interesting.
Note that APs contain one task only do not have following
tasks. For any task i ∈ {k, . . . , n}, it must either be a starting
task or a following one. We are interested in finding out the
optimal cost of serving tasks {i, . . . , n}, and we use QS(i, n)
and QF (i, n) to denote the optimization problems of serving
tasks {i, . . . , n} when task i is a starting and following
task, respective. Note that in these two problems, only tasks
{i, . . . , n} are served and all other tasks in {k, . . . , n} are
not considered. In problem QF (i, n), the system is active
when task i arrives; therefore, task i will be served right
after its arrival. Let JSi and JFi be the minimum cost of
QS(i, n) and QF (i, n), respectively. When i = n, we can
easily calculate JSn and JFn : JSn = Cw + Caθ, J

F
n = Caθ.

Note that JFn does not include the wake-up cost Cw, since by
assumption, task n is a following task. The operating cost,
Caθ, is identical in both cases. Suppose that JSi and JFi ,
i ∈ {k + 1, . . . , n} are both known, the next step is to find
JSi−1 and JFi−1.

We first focus on JSi−1. By assumption, task i − 1 is a
starting task. We use Lemmas 4.2 and 4.3 in [20] to find out
the optimal starting time of task i − 1 in problem QS(i −
1, n). Let the optimal starting time be si−1

i−1,n. For tasks in
{i, . . . , n}, find task l that satisfies the following:

si−1
i−1,n + (j − i+ 1)θ > aj ,∀j ∈ {i− 1, . . . , l − 1},

and si−1
i−1,n + (l − i+ 1)θ < al

(5)



If task l does not exist, then it is a trivial case that the system
is always busy serving tasks {i − 1, . . . , n}, and there is a
single AP that starts from si−1

i−1,n and ends at si−1
i−1,n + (n−

i+2)θ. In this case, JSi−1 = Cw + (n− i+2)θCa. We now
consider the more interesting case that task l does exist. In
particular,

JSi−1 = min(V SSi−1,l + JSl , V
SF
i−1,l + JFl ) (6)

where V SSi−1,l is the cost of serving tasks {i − 1, . . . , l − 1}
when task l is a starting task:

V SSi−1,l = Cw + (l − i+ 1)θCa

V SFi−1,l is the cost of serving tasks {i − 1, . . . , l − 1} when
task l is a following task:

V SFi−1,l = Cw + (al − si−1
i−1,n)Ca

We now focus on JFi−1. We emphasize again that in this
case, task i− 1 sees an active system upon its arrival; it will
be served right away since it is the first task in QF (i−1, n).
For tasks in {i, . . . , n}, find task l that satisfies the following:

ai−1 + (j − i+ 1)θ > aj ,∀j ∈ {i− 1, . . . , l − 1},
and ai−1 + (l − i+ 1)θ < al

(7)

Once gain, task l may not exist, and it corresponds to the case
that the system is always busy serving tasks {i− 1, . . . , n}.
In this case, there is a single AP that starts from ai−1 and
ends at ai−1+(n− i+2)θ. We have JFi−1 = (n− i+2)θCa.
We now consider the more interesting case that task l does
exist. We have:

JFi−1 = min(V FSi−1,l + JSl , V
FF
i−1,l + JFl ) (8)

where V FSi−1,l is the cost of serving tasks {i − 1, . . . , l − 1}
when task l is a starting task:

V FSi−1,l = (l − i+ 1)θCa

V FFi−1,l is the cost of serving tasks {i− 1, . . . , l− 1} when
task l is a following task:

V FFi−1,l = (al − ai−1)Ca

In Table I, we show the algorithm that returns the optimal
cost of Q(k, n). This algorithm involves two more algorithms
that return the optimal costs of QS(i − 1, n) (Table II) and
QF (i− 1, n) (Table III), respectively.

1. JS
n = Cw + Caθ, JF

n = Caθ, and
set both JS

n → next and JF
n → next to NULL.

2. for (i = n; i− k >= 1; i−−) {
3. Initialize JS

i−1 → next and JF
i−1 → next to NULL

4. Solve QS(i− 1, n)
5. Solve QF (i− 1, n)
6. }

TABLE I: The algorithm that returns the optimal cost of
Q(k, n)

Theorem 4.1: JSk is the optimal cost of problem Q(k, n).
Proof: We use induction to prove it.

1. Use Lemmas 4.2 and 4.3 in [20] to find
si−1
i−1,n, the optimal starting time of task i− 1

2. If (there exists l that satisfies (5)) {
3. V SS

i−1,l = Cw + (l − i+ 1)θCa and
V SF
i−1,l = Cw + (al − si−1

i−1,n)Ca

4. If (V SS
i−1,l + JS

l ≤ V
SF
i−1,l + JF

l ) {
5. JS

i−1 = V SS
i−1,l + JS

l

6. JS
i−1 → next = JS

l
7. }
8. else {
9. JS

i−1 = V SF
i−1,l + JF

l

10. JS
i−1 → next = JF

l
11. }
12. }
13. else { // single AP case
14. JS

i−1 = Cw + (n− i+ 2)θCa

15. }

TABLE II: The algorithm that returns the optimal cost of
QS(i− 1, n)

1. If (there exists task l that satisfies (7)) {
2. V FS

i−1,l = (l − i+ 1)θCa and V FF
i−1,l = (al − ai−1)Ca

3. If (V FS
i−1,l + JS

l ≤ V
FF
i−1,l + JF

l ) {
4. JF

i−1 = V FS
i−1,l + JS

l

5. JF
i−1 → next = JS

l
6. }
7. else {
8. JF

i−1 = V FF
i−1,l + JF

l

9. JF
i−1 → next = JF

l
10. }
11. }
12. else { //single AP case
13. JF

i=1 = (n− i+ 2)θCa

14. }

TABLE III: The algorithm that returns the optimal cost of
QF (i− 1, n)

Step 1: Task n can either be a starting task or a following
task. When it is a starting task, it is obvious that JSn is the
optimal cost of QS(n, n). When it is a following task, it is
also obvious that JFn is the optimal cost of QF (n, n).

Step 2: Suppose that JSj is the optimal cost of problem
QSj (j, n), and JFj is the optimal cost of problem QFj (j, n),
j ∈ {i, . . . , n}. We need to show that JSi−1 and JFi−1 are the
optimal cost of problem QSi−1(i− 1, n) and QFi−1(i− 1, n),
respectively. Since the proofs are similiar, we only show
that JSi−1 is the optimal cost of problem QSi−1(i− 1, n). By
assumption, task i−1 is a starting task. We can use Lemmas
4.2 and 4.3 in [20] to find si−1

i−1,n, the optimal starting time
of task i− 1. We now discuss two cases:

Case 1: Task l that satisfies (5) does not exist.
It implies that si−1

i−1,n + (j − i + 1)θ > aj ,∀j ∈ {i −
1, . . . , n}, i.e., the system is busy serving tasks whenever a
task j ∈ {i−1, . . . , n} arrives. Therefore, there is no reason
to go to sleep, and tasks {i − 1, . . . , n} form a single AP.
From Line 14 of Table II, JSi−1 = Cw + (n − i + 2)θCa is
the optimal cost of problem QS(i− 1, n).

Case 2: Task l that satisfies (5) does exist.
In this case, task l has not arrived when task l− 1 departs

the system. It has two subcases: the system should either go



to sleep when task l − 1 departs or stay awake (and serve
task l when it arrives). The subcase that yields a smaller cost
is the optimal solution, and this is calculated in (6). �

We have proved that when the algorithm in Table I stops,
JSk is the optimal cost of problem Q(k, n). The correspond-
ing optimal control, i.e., the starting time and ending time
of each AP, can be traced back iteratively by identifying the
JSl or JFl that each JSi−1 or JFi−1 points to. The procedure
is provided in Table IV.

1. J = JS
k , i = J.task = J ′s subscript, and

J.type = J ′s superscript
2. while ( J → next is not NULL){
3. J ′ = J− > next
4. next task = J ′.task
5. next type = J ′.type
6. If (J.type = “S”){
7. AP starts at sii,n;
8. }
9. If (next type = “S”) {
10. AP ends after task next task − 1 is served;
11. J = J ′ and i = J.task; continue;
12. }
13. If (next type = “F”) {
14. Keep the system active through anext task

15. }
16. J = J ′ and i = J.task
17. }

TABLE IV: The procedure that returns the optimal control
to Q(k, n)

Next, we use the example in Fig. 4 and Fig. 5 to show
how the above algorithms work. We have three tasks 1, 2,
and 3 belong to a SAP (k = 1 and n = 3). Initially, JSn =
JS3 = Cw + Caθ = 11, and JFn = JF3 = Caθ = 1. In the
first iteration (i = n = 3), we calculate JSi−1 and JFi−1. To
calculate JSi−1 = JS2 , we first figure out s22,3 = 28. Then, we
find out that no task l satisfies (5). Therefore, tasks 2 and
3 form a single AP in problem QS(2, 3), and JS2 = 12. To
calculate JFi−1 = JF2 , we identify that task l = 3 satisfies
(7). We then use (8) to obtain JF2 = min(V FS2,3 +JS3 , V

FF
2,3 +

JF3 ) = min(1 + JS3 , 10 + JF3 ) = 11. In the final iteration
(i = n − 1 = 2), we only need to calculate JSi−1 = JS1 .
Because s11,3 = 9 and task l = 2 satisfies (5), we use (6) to
calculate JS1 : JS1 = min(V SS1,2 +JS2 , V

SF
1,2 +JF2 ) = min(11+

JS2 , 20+J
F
2 ) = 23. This is the optimal cost obtained in Fig.

5. If we follow the procedure in Table IV, we will get the
exact same optimal solution as shown in Fig. 5. The details
are omitted.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study the ON-OFF scheduling problem
for a class of DESs with real-time constraints. The DESs
have constant operating cost Ca per unit time and fixed wake-
up cost Cw. Our goal is to switch the system between the ON
and the OFF states so as to minimize cost and satisfy real-
time constraints. In particular, we consider a homogeneous
case that all tasks have the same number of operations and
each one’s deadline is d seconds after the arrival time. For
the off-line scenario that all task information is known to us
a priori, we show that the optimal solution can be obtained

via a two-fold decomposition: (i) super active periods that
contain one or more active periods can be identified easily
using the task arrival times and deadlines and (ii) the optimal
solution to each super active period can be solved using
dynamic programming.

Our future work includes finding an adaptive control
policy that minimizes the system cost in on-line control.
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