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Abstract— Indoor localization is a very promising field in
the era of Internet of things (IoT) and has a large number of
potential applications. Due to the popularity of mobile devices
in recent years, using the Received Signal Strength (RSS) of
Wi-Fi signals and a fingerprint database (a.k.a radio map) for
indoor localization becomes quite attractive. One obstacle is
that the RSS values on the reference device (the one used to
build the radio map) and the target device (the one whose
location needs to be determined) are not identical, resulting
in localization errors. To reduce the errors, a costly and time
consuming calibration process is often used. In this paper, we
propose a novel CAlibration Free LOCalization (CAFLOC)
approach that utilizes relative RSS information to locate target
devices and does not require any calibration. Our method
relies on the linear relationship between the RSS values on
the reference and target devices, which has been reported by
many papers in the literature and also verified in our LAB. We
first show mathematically why such a linear relationship exists.
We then present CAFLOC and prove that in ideal situations,
it is able to precisely identify locations without errors. To
verify its performance in real-world scenarios, we run extensive
localization tests on CAFLOC and the Nearest Neighbor (NN)
approach. Our results consistently show that CAFLOC is much
more accurate than NN.

Index Terms— indoor localization; wireless networks

I. INTRODUCTION

Accurate indoor localization has the potential to transform
the way people navigate indoors in a similar way that GPS
transformed the way people navigate outdoors. Many excit-
ing applications in the era of Internet of Things (IoT) can be
built upon accurate indoor localization. To name a few, turn-
by-turn directions will make people never get lost again in
large shopping malls; vendors may push ads and promotions
to customers’ mobile devices based on their locations; indoor
monitoring and tracking for little children and seniors will
become a breeze. Therefore, indoor localization is a crucial
component of IoT infrastructures for smart cities.

Because satellite signals are attenuated severely in indoor
environment, the GPS technology, which has been very
successful in outdoor localization, does not work well in
indoor environment. For this reason, researchers have been
looking for alternatives. In [1], Huang et. al. used acoustic
signals to differentiate the spatial difference between differ-
ent locations; visible light is used in [2]; UWB signal is
used in [3]; FM radio signal is used in [4]; and sensors
are used in [5] and [6]. Among all these alternatives, Wi-
Fi signals perhaps are the most ideal choice, due to its two
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major advantages over other options: (i) most mobile devices
have built-in Wi-Fi modules and (ii) no significant changes
to the infrastructure are required.

There exists many different techniques for wireless indoor
localization. A review can be found in [7]. In a nutshell,
these techniques map physical measurements derived from
wireless signals into either geometric parameters such as
relative distance and direction from the reference points, or
pre-labeled landmarks directly. In terms of physical mea-
surements, there are three commonly used quantities: power,
time, and angle. Time and angle based approaches often
rely on either high bandwidth or costly signal generators.
As a result, power based approaches are gaining popularity
in recent years.

To convert physical measurements into actual locations,
mapping methods are required. Geometric mapping is one
approach, and a representative way is distance-based map-
ping (a.k.a ranging). Because indoor environment is often
complex and it is difficult to differentiate line-of-sight paths
from none-line-of-sight paths, fingerprinting based mapping
becomes a good alternative to geometric mapping.

In fingerprinting methods, a site survey of the Received
Signal Strength (RSS) values (fingerprints) on a reference
device at all known locations needs to be done beforehand
in order to build a database, using which a pattern-matching
is performed to match the RSS values of a target device
at an unknown location to that of an entry in the database.
In Wi-Fi networks, the RSS values are readily available in
the 802.11 protocols, making fingerprinting approaches very
easy to implement on off-the-shelf devices. However, one
significant drawback of fingerprinting based approaches is
the added overhead of site survey. To avoid often tedious and
time consuming site survey, crowd-sourcing based methods
emerged in recent years to automatically populate the finger-
print database using mobile devices (smart phones, tablets,
etc.)

To locate a device using the fingerprinting database, both
deterministic and probabilistic methods can be utilized. High
accuracy has been reported when the same wireless device
is used for both site survey and localization. However, if
one device is used for site survey and another is used for
localization, i.e., the reference and target devices are differ-
ent, then the aforementioned solutions may be inaccurate.
The reason is that different wireless devices use different
wireless modules and different antennas with different gains.
As a result, the RSS values returned by different devices will
vary. In addition, the 802.11 protocols do not precisely define
how the RSS values should be reported. Thus, different
vendors have their own interpretation of the protocol, causing



differences between reference and target RSS values. A
common solution to this problem is calibration, in which
the RSS values of the target device are converted to those
of the reference device. Calibration can be done manually,
quasi-automatically, or automatically. Regardless of how cal-
ibration is done, it adds computational overhead to the local-
ization system and also inevitably incurs calibration errors.
When crowd-sourcing is used to obtain the fingerprinting
database, more sophisticated calibration is often required.
Yet another problem with fingerprinting based approaches is
that the RSS values of the same device at the same location
change over time. This temporal variation adds another layer
of complexity to the algorithm design, as the fingerprinting
database also needs to be calibrated periodically.

In this paper, we propose a novel RSS fingerprinting based
Calibration Free Localization (CAFLOC) method. Compared
with the existing ones in the literature, our approach is truly
calibration free, i.e., no calibration is ever needed for any
target device.

The organization of the paper is as follows: in Section II,
we summarize related work; in Section III, we introduce our
system model and provide justifications; in Section IV, we
present CAFLOC and show mathematically why it is truly
calibration free; in Section V, we show experimental results
obtained from real-world scenarios; finally, we conclude and
discuss future work in Section VI.

II. RELATED WORK

To the best of our knowledge, the first work that utilizes
RF-based fingerprint database (a.k.a radio map) for indoor
localization is RADAR [8]. In this pioneer work, Bahl et al.
uses a deterministic method known as the Nearest Neighbor
(NN) to infer the target device’s location. In their approach,
the nearest neighbor is determined by finding the smallest
Euclidean distance in the signal space between the signal
strength of the target device and the signal strength of the
reference device in the fingerprint database. Although the
authors use average RSS values of various combinations of
orientation and position, RADAR was only able to achieve
accuracy up to meter level, due to the variations of the RSS
values. To reduce localization error, RADAR also proposes
the k nearest neighbors approach, in which k, instead of 1,
nearest neighbors in the signal space are used to calculate
the localization of the target device. Note that the fingerprint
database can be built using the data from either the access
points (APs) [8] or the clients [9]. The latter approach is
more scalable when the number of target devices is large.

In contrast to deterministic methods where only the aver-
age RSS values are used in localization, Bayesian probabilis-
tic fingerprint approaches utilize more statistical information
such as histogram to identify the location. In particular,
Bayes’ theorem is used to maximize the probability of
successful localization. It has also been shown in [10]
that Bayesian probabilistic approaches are more accurate
than deterministic ones. However, in order to apply Bayes’
theorem, some assumptions about the prior probabilities are
required. In the context of indoor wireless localization, the

prior probabilities are the probabilities of the target device
appearing at each location. Such prior probabilities are often
hard to be estimated accurately; in the literature, they are of-
ten assumed to be equal to each other. A representative work
along this line is [11], in which Youssef et al. derived that
the location that has the maximum probability of success is
essentially the one with maximum probability of generating
the measured RSS values.

Regardless of using deterministic NN or Bayesian proba-
bilistic approaches, calibration has been an essential part in
all practical and high accuracy wireless indoor localization
systems [12] [13]. The goal of calibration is to eliminate
the gap between the RSS values returned by the reference
device and the target device. The drawback of calibration is
that it is often time consuming, tedious, and impractical for
real-world applications. See a recent work in [14], in which
Laoudias et al. develop an automatic calibration algorithm
that finds the relationship between the reference and target
RSS values using the signal strength histograms and the
inverse cdf functions of the two devices.

There also exists calibration-free localization approaches.
The RSS difference between any AP pair is used to build
relative fingerprint databases [15] [16]. The problem with this
approach is that the size of the fingerprint database grows
dramatically when the number of APs is large. Mahtab et al.
[17] build the fingerprint database using the so called Signal
Strength Difference: the relative RSS values between a
reference AP and other APs. Although their method has less
computational overhead and fewer entries in the database,
it is not always easy to select the reference AP, since the
locations may be covered by different sets of APs. Rank
based calibration-free algorithms are proposed in [18] and
[19], in which the ranking information of the RSS values
is used for localization purposes. The problem with rank
based approaches is that the ranking information alone is
often insufficient for accurate localization. In [20], Yang et
al. propose FreeLoc, a calibration-free crowd-sourced indoor
localization algorithm. Instead of using the average value of
all observed RSS values, their approach uses the average
value of the most commonly seen RSS values to build
the fingerprint database. This is based on the observation
that most-recorded RSS values in the case of the short-
duration measurements is very close to that in the long-
duration measurement case. In addition, the authors also use
relative signal levels in the fingerprint database. In particular,
a location’s entry contains key-value combos where the key
is the BSSID of an AP and the values are other APs whose
RSS values are within δ dB.

III. SYSTEM MODEL

We first introduce some notations:
N : the total number of locations in the building.
Li : the i-th location in the building, i ∈ {1, . . . , N}
Dr : the reference device that is used to build the

fingerprinting database
Dt : the target device whose location needs to be identi-

fied.



M : the total number of access points (APs) in the system.
Mi : the total number of access points (APs) detected by

both Dt and Dr at location Li. We introduce Mi because
depending on the sensitivity of the reference and target
devices, not all APs can be detected. The Mi APs are
essentially the union of the sets of APs detected by the
reference and target devices, respectively.
AP ji : the j-th AP in an ordered list of Mi APs, j ∈

{1, . . . ,Mi}. For example, the APs can be ordered based on
their MAC addresses.
di,j : the distance between location Li and AP ji .
R
r

i,j : the average RSS value of AP ji received by the
reference device at location Li.
R
t

i,j : the average RSS value of AP ji received by the target
device at location Li.

Note that the bar in R
r

i,j and R
t

i,j indicates that they are
the average RSS values. Also note that although the RSS
values received by a target device does not depend on Li,
Mi and AP ji do. Therefore, we have subscript i in R

t

ij to
indicate the dependency.

We now derive the relationship between R
r

i,j and R
t

i,j . To
model the signal path loss between a particular transmitter-
receiver pair in indoor environment, the log-normal shadow-
ing model [21] is often used:

PL(d)[dB] = PL(d0) + 10n log(
d

d0
) +Xσ

where d is the distance between the transmitter and the re-
ceiver, PL(d0) is the average pass loss at reference distance
d0, n is the pass loss exponent, and Xσ is a zero-mean
Gaussian distributed random variable (in dB) with standard
deviation σ (also in dB). If we only use average power, the
last term in the above equation can be eliminated and we
get:

PL(d)[dB] = PL(d0) + 10n log(
d

d0
)

The average RSS value is the difference between the trans-
mission power and the average pass loss:

R(d)[dBm] = PTx[dBm] − PL(d)[dB] (1)

= PTx[dBm] − PL(d0)[dB] − 10n log(
d

d0
)[dB]

= R(d0)[dBm] − 10n log(
d

d0
)[dB]

Note that R(d0)[dBm] above is the received signal strength at
reference distance d0 and can be represented using the Friis
free space propagation model [21]:

R(d0)[dBm] = 10 log(
PAPGAPGDλ

2

16π2d20L
)[dBm] (2)

where PAP is the transmission power of an AP, GAP is the
gain of the AP’s antenna, GD is the gain of the receiving
device’s antenna, λ is the wavelength of the wireless signal,
and L (L ≥ 1) is the system loss factor related to hardware.

Combining (1) and (2), we have

R(d)[dBm] = 10 log(
PAPGAPGDλ

2

16π2d20L
)− 10n log(

d

d0
)[dB]

Note that, n, the pass loss exponent, is determined by
the indoor environment [21] and can be considered as a
constant for each transceiver pair. If the hardware loss caused
by different APs are similar or the same (this assumption
is especially valid when the same model of AP is used
for localization purposes), the miscellaneous losses L only
depends on the target and reference devices. We now obtain
R
t

i,j and R
r

i,j using the equations above:

R
t

i,j = 10 log(
PAP j

i
GAP j

i
GDtλ

2

16π2d20Lt
)− 10n log(

di,j
d0

)[dB]

R
r

i,j = 10 log(
PAP j

i
GAP j

i
GDrλ

2

16π2d20Lr
)− 10n log(

di,j
d0

)[dB]

From the two equations above, we can derive:

R
t

i,j = R
r

i,j + 10 log(
GDtLr
GDr

Lt
) (3)

i.e.,

R
t

i,j = αR
r

i,j + β, (4)

i ∈ {1, . . . , N} and j ∈ {1, . . . ,Mi}

where α = 1 and β = 10 log(
GDtLr

GDrLt
). Although (3) shows a

simple and nice linear relationship between R
t

i,j and R
r

i,j , it
is important to note the following: (i) since Rti,j and Rri,j are
random variables, the values of R

t

i,j and R
r

i,j can only be
estimated, (ii) it only holds when the reference and target
devices are at the exact the same locations, and (iii) the
above results assume isotropic antennas. In Fig. 1, we show
the experimental results obtained in room 170B of the VET
building at MTSU. In this experiment, we first measure the
RSS values of nearby APs using a laptop computer’s internal
Wi-Fi module (Intel Dual Band Wireless-AC 7265). We then
measure the RSS values of the APs using a USB Wi-Fi
dongle (Linksys AE3000). The horizon and vertical axises of
Fig. 1 are the RSS values of the APs obtained by the internal
and external Wi-Fi modules, respectively. The RSS values are
collected via a free program called WiFiInfoView [22], and
each value is the average of 100 samples. As shown in Fig.
1, although the data set does not form a strict linear curve
(due to the reasons explained above), linear regression is
valid to model the relationship between the two RSS values.
Specifically, α = 0.9032 and β = −8.9962; this is consistent
with other works in the literature [23] [14] where the linear
regression coefficients are slightly different.

IV. CALIBRATION FREE LOCALIZATION (CAFLOC)

First of all, we need to point out that the NN approach
without calibration does not work well in some scenarios.
This can be seen from a simple example. Suppose that there
are two locations (L1 and L2) and three APs. Let us assume
that we can obtain the true average of the RSS values of the
reference and target devices at the same location, and α = 1
and β = −8. We further assume the fingerprints generated
by the reference device at L1 and L2 are {-30, -40, -50}
dBm and {-40, -50, -60} dBm, respectively. Then, the RSS
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Fig. 1: RSS values of wireless access points obtained by two
different Wi-Fi modules at roughly the same location

values of the target device at L1 and L2 are {-38, -48, -58}
dBm and {-48, -58, -68} dBm, respectively. In this case, the
location of the target device will always be L2 if the NN
approach is used.

As we mentioned in Section II, one way of solving this
problem is to do calibration. While many existing calibration
efforts try to estimate α and β using linear regression, our
approach is to eliminate α and β in the localization process.
What it implies is that our approach will work well regardless
of the actual values of α and β. The intuition behind
our method is the following: in RSS fingerprinting based
approaches, locations are identified by the variations of RSS
values; therefore, in order to locate a target device, we only
need to use the relative (normalized) variation information
of the RSS values, not necessarily the absolute RSS values.

Our approach is motivated by the linear relationship shown
in (3). Because it is a true CAlibration Free LOCalization
method, we call it CAFLOC. We now formally introduce it.

Suppose that the fingerprinting database has been estab-
lished and the RSS values at the target device have been
collected. In order to differentiate the real-world experimen-
tal results from the true average values, we use R̃ri,j and
R̃ti,j to denote the signal levels collected by the reference
and target devices, respectively. Let

pi min = argmin
j∈{1,...,Mi}

R̃ri,j and pi max = argmax
j∈{1,...,Mi}

R̃ri,j

qi min = argmin
j∈{1,...,Mi}

R̃ti,j and qi max = argmax
j∈{1,...,Mi}

R̃ti,j

The relative or normalized signal levels of RSS values at
the reference and the target devices, respectively, are defined
as follows:

nrij =
R̃ri,j − R̂ri

R̃ri,pi max
− R̃ri,pi min

and ntij =
R̃ti,j − R̂ti

R̃ti,qi max
− R̃ti,qi min

(5)
where R̂ri and and R̂ti are the convex combinations of R̃ri,j

and R̃ti,j , respectively, i.e.,

R̂ri =

Mi∑
j=1

λi,jR̃
r
i,j , R̂

t
i =

Mi∑
j=1

λi,jR̃
t
i,j ,

λi,j ≥ 0,

Mi∑
j=1

λi,j = 1.

When λi,j , j ∈ {1, . . . ,Mi} are chosen, nrij and ntij
can be easily calculated using the RSS values collected
by the reference and target devices, respectively. Since the
denominators in (5) are greater than the numerators, both nrij
and ntij are less than 1. The target’s location is determined
by:

argmin
i∈{1,...,N}

Ji (6)

where

Ji =

{
1
Mi

∑Mi

j=1(n
r
ij − ntij)2, Mi > 1

1, Mi ≤ 1
(7)

In (6) and (7), we essentially find the location that yields
the minimum mean squared error between the normalized
reference and target RSS values. Recall that Mi is the
number of APs detected by both reference and target devices.
If it is not greater than 1 and there are sufficient number of
APs covering the indoor space, then it is very likely that the
target device is not at location Li. Therefore, we consider
it as a trivial case and assign number 1 (larger than any
possible mean squared error) to Ji.

Next, we show why CAFLOC should return the correct
location.

Lemma 4.1: Suppose that Mi > 1, R̃ri,j = R
r

i,j , and
R̃ti,j = R

t

i,j . If Li∗ is the optimal location returned by
CAFLOC, then Ji∗ = 0.

Proof: Since R̃ri,j = R
r

i,j and R̃ti,j = R
t

i,j , we can rewrite
nti∗j and nri∗j as follows:

nti∗j =
R
t

i∗,j −
∑Mi∗
j=1 λi∗,jR

t

i∗,j

R
t

i∗,qi∗ max
−Rti∗,qi∗ min

and

nri∗j =
R
r

i∗,j −
∑Mi∗
j=1 λi∗,jR

r

i∗,j

R
r

i∗,qi∗ max
−Rri∗,qi∗ min

Using (3), we obtain:

nti∗j =
αR

r

i∗,j + β − α
∑Mi∗
j=1 λi∗,jR

r

i∗,j − β
∑Mi∗
j=1 λi∗,j

αR
r

i∗,qi max
+ β − αRri∗,qi min

− β

=
αR

r

i∗,j + β − αR̂ri∗,pi∗ min
− β

R
r

i∗,pi∗ max
−Rri∗,pi∗ min

=
R
r

i∗,j − R̂ri∗,pi∗ min

R
r

i∗,pi∗ max
−Rri∗,pi∗ min

= nri∗j

Therefore,

Ji∗ =
1

Mi

Mi∑
j=1

(nri∗j − nti∗j)2 = 0 �



The above lemma means that in ideal scenarios, (7) achieves
the minimum value 0 for a specific i when Li is the actual
location of the target device. Looking at (7), (6), and (5), the
localization process does not rely on the actual values of α
and β. Therefore, it is calibration free.

The performance of CAFLOC depends on the selection
of λi,j for the convex combination shown in (5). We next
show two different methods:

CAFLOC1 : λi,j =

{
1, j = pi min or qi min

0, o.w.

CAFLOC2 : λi,j =
1

Mi

Using CAFLOC1 and CAFLOC2, R̂ri and R̂ti in (5)
become:

R̂ri = R̃ri,pi min
, R̂ti = R̃ti,qi min

,

and

R̂ri =
1

Mi

Mi∑
j=1

R̃ri,j , R̂
t
i =

1

Mi

Mi∑
j=1

R̃ti,j ,

respectively. Essentially, the former is the smallest RSS
value, and the latter is the average RSS value.

We need to emphasize again that due to the reasons
explained right after (3), it is important to measure the
performance of CAFLOC using real-world experiments.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results in
which we compare the CAFLOC algorithm with the NN
approach without calibration. In our experiment, we choose
four locations in VET170B at MTSU. These locations are
marked in Fig. 2. VET170B is roughly a 5m by 13.5m
rectangular LAB space. The distance between L1 and L2
is 2.7m, and the distance between L1 and L3 is 4.7m. L3
is about 5m away from L4. Three wireless APs are placed
on each side of VET170B. All six APs are Linksys E2500
simultaneous dual-band routers. In total, we have twelve
wireless signals, six in the 2.4GHz band and six in the
5GHz band.

Before we run the localization experiments, we first
use the laptop’s internal Wi-Fi module (Intel Dual Band
Wireless-AC 7265) to build the fingerprint database. The
fingerprint of each location is obtained by finding the aver-
age of 100 RSS samples. During the experiments, we run
localization test 100 times at each location; in each test,
the RSS data are the average of 20 RSS samples obtained
by the external USB Wi-Fi dongle Linksys AE3000. The
percentages of successful tests in the above experiments are
shown in Table I. The NN algorithm without any calibration
works well in general at L3 and L4. However, its perfor-
mance is very bad at L1 and L2 (highlighted in bold face).
Both CAFLOC1 and CAFLOC2 outperform NN significantly
at these two locations. The same tests are repeated using a
different target device: TP-Link Archer T2U dual-band USB
dongle, and the results are shown in Table II. NN does a
good job at L1, L3, and L4. Its 100% success rate is even

Location 1

Location 2

Location 3

Location 4

Fig. 2: VET170B: Location of the Experiment

L1 L2 L3 L4 Average
Nearest Neighbor 23% 48% 100% 88% 64.75%

CAFLOC1 83% 91% 96% 96% 91.5%
CAFLOC2 93% 91% 100% 100% 96%

TABLE I: Percentages of localization success at each location in
VET170B. Six Linksys APs are used. Target Wi-fi module: Linksys
AE3000 N900 dual-band USB dongle.

better than CAFLOC1 at L1. However, NN achieves zero
percent success rate at L2. The CAFLOC methods, on the
contrary, are able to identify L2 with over 90% success rate.
Note that CAFLOC2 achieves 100% success rate at all four
locations. Looking at both tables, CAFLOC1 and CAFLOC2
have over 90% success rate on average, while NN only has
around 70% success rate.

Our experimental results clearly indicate that CAFLOC
is better than NN without calibration. Another interesting
observation is that CAFLOC2 seems to be better than
CAFLOC1. It happens because when CAFLOC1 is used,
nripi max

= nriqi max
= 1 and nripi min

= nriqi min
= 0, which

means both nripi max
− nriqi max

and nripi min
− nriqi min

are
0. As a result, only Ni − 2 APs’ RSS values are involved
in localization. CAFLOC2 does not have this problem and
uses all Ni APs’ data. Therefore, it is not surprising that
CAFLOC2 outperforms CAFLOC1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose CAFLOC, a calibration-free
localization algorithm using RSS values and fingerprint
databases. To introduce CAFLOC, we first show mathemati-
cally that there exists a linear relationship between the mean
RSS values of the same AP received by two different wireless
modules. The linear relationship is verified by finding the
linear fitting of the average RSS values obtained in real-
world experiments. The key idea of CAFLOC is to use

L1 L2 L3 L4 Average
Nearest Neighbor 100% 0% 100% 100% 75%

CAFLOC1 73% 93% 100% 100% 91.5%
CAFLOC2 100% 100% 100% 100% 100%

TABLE II: Percentages of localization success at each location in
VET170B. Six Linksys APs are used. Target Wi-fi module: TP-Link
Archer T2U dual-band USB dongle.



the relative RSS ratios, instead of the absolute values, to
calculate the distance between the RSS values received by
the target device and the ones in the fingerprint database. We
are able to show that under some technical consumptions,
CAFLOC will return the correct location. To verify the true
performance of CAFLOC, we run experiments in practical
indoor environments; our results indicate that CAFLOC
outperforms regular NN approach significantly.

Our future work includes using crowdsourcing and proba-
blistic methods to futher improve the accuracy of CAFLOC.
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