
1

Receding Horizon Control for a Class of Discrete
Event Systems with Real-Time Constraints

Lei Miao
Nortel Networks, Billerica, MA 01821

leimiao@nortel.com
Christos G. Cassandras

Dept. of Manufacturing Engineering and Center for Information and Systems Engineering
Boston University, Boston, MA 02215

cgc@bu.edu

Abstract— We consider Discrete Event Systems (DES) in-
volving the control of tasks with real-time constraints. When
future event time information is limited, we propose a Receding
Horizon (RH) controller in which only some future information is
available within a time window. Analyzing sample paths obtained
under this scheme and comparing them to optimal sample paths
(obtained when all event times are known), we derive a number of
attractive properties of the RH controller, including: the fact that
it still guarantees all real-time constraints; there are segments of
its sample path over which all controls are still optimal; the error
relative to the optimal task departure times is decreasing under
certain conditions. Simulation results are included to verify the
properties of the controller and show that its performance can
be near-optimal even if the RH window size is relatively small.

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves
the control of resources allocated to tasks according to certain
operating specifications (e.g., tasks may have real-time con-
straints associated with them). The basic modeling block for
such DES is a single-server queueing system operating on a
first-come-first-served basis, whose dynamics are given by the
well-known max-plus equation

xi = max(xi−1, ai) + si (1)

where ai is the arrival time of task i = 1, 2, . . . , xi is the
time when task i completes service, and si is its service time.
Examples arise in manufacturing systems, where the operating
speed of a machine can be controlled to trade off between
energy costs and requirements on timely job completion [1];
in computer systems, where the CPU speed can be controlled
to ensure that certain tasks meet specified execution deadlines
[2]; and in wireless networks where severe battery limitations
call for new techniques aimed at maximizing the lifetime of
such a network [3]. When the ith task is performed, a physical
process takes place and a physical state zi(t) is associated
with the task over [max(ai, xi−1), xi). Moreover, the phys-
ical process may be under some control u i(t) defined over
[max(ai, xi−1), xi). In general, this process is characterized

The authors’ work is supported in part by the National Science Foundation
under Grant DMI-0330171, by AFOSR under grants FA9550-04-1-0133 and
FA9550-04-1-0208, and by ARO under grant DAAD19-01-0610.

by dynamics of the form

żi = gi(zi, ui, t), zi(xi−1) = z0
i , zi(xi) = zf

i , (2)

t ∈ [max(ai, xi−1), xi)

In this paper, we are interested in a special case of (2) where
the task dynamics are described by

żi = ui(t) (3)

For example, if a CPU task requires μi operations to be
completed, then zi(t) is the cumulative number of operations
performed by time t (with zi(xi−1) = 0, zi(xi) = μi) and the
task departs when the condition zi(t) = μi is met. We can
now rewrite (1) as

xi = max(xi−1, ai) + s(zi, ui), i = 1, 2, . . . (4)

where xi can be thought of as the temporal state of task i
and s(zi, ui) is its processing time which now depends on
some control ui; for notational ease, we write ui to denote a
function ui(t) defined over [max(ai, xi−1), xi) and the same
is true for zi.

Our goal is to study optimization problems involving an
objective function defined over a set of tasks i = 1, . . . , N
subject to (4)-(3) and real time constraints expressed as x i ≤
di for given di, i = 1, . . . , N . Solving such problems requires
a controller determining ui(t) defined over [max(ai, xi−1), xi)
for all i = 1, . . . , N . The precise form of the controller
depends on the operation mode of the system as explained
next.

In an off-line scheme, the sequence of task arrival times
{ai}, i = 1, . . . , N , is known in advance, whereas in the
case of on-line control no such prior information is available.
Moreover, the controller is dynamic when u i(t) is allowed to
vary over all t ∈ [max(ai, xi−1), xi), and it is called static
when ui(t) is kept fixed over [max(ai, xi−1), xi); it may,
however, change with every i = 1, . . . , N . In either off-line or
on-line schemes, static control is commonly used in practice,
i.e., once a task begins service, its processing rate is kept fixed.
However, as performance requirements increase and DES are
expected to operate in heavily constrained environments, an
interesting question that arises is: what is the benefit of varying
the processing rate depending on the information available



2

to a controller that can regulate this rate? In the off-line
case, this question is studied in [4] for cost functions that are
strictly convex, differentiable, and monotonically decreasing
in s(zi, ui) and with deadline constraints of the form xi ≤ di

for given di, i = 1, . . . , N . The main result in [4] is that static
control is the unique optimal control of an off-line problem
of this form. The significance of this result lies in asserting
the optimality of a simple controller that does not require any
data collection or processing in environments where the cost
of such actions is high. Such static off-line controllers under
real-time constraints have been extensively studied, mostly in
the real-time scheduling literature, e.g., [5],[2], and in the
context of Dynamic Voltage Scaling (DVS) techniques, e.g.,
[6],[7],[8]. The optimality of a static controller also applies to
the case of on-line scheduling of periodic tasks (hence having
predictable arrival times) [9].

In this paper, we turn our attention to on-line control with
real-time constraints (deadlines) where task arrival times {a i},
i = 1, . . . , N , define a random sequence. We must then
seek an on-line controller which guarantees the required task
deadlines and, if it is not optimal, it is possible to quantify its
deviation from optimal performance. Our main contribution is
to develop a Receding Horizon (RH) controller, based on the
assumption that some future information over a limited time
window is available or can be estimated with good accuracy
(our results also apply to the case where this time window
is reduced to zero). RH schemes of this type are often used
in Model Predictive Control (MPC) where they are normally
used when stabilizing feedback solutions are extremely hard or
impossible to obtain [10]. In DES, such RH schemes have seen
limited use to date and their main benefit arises when future
information is unavailable due to the stochastic nature of the
event processes involved. By using RH control, we can bypass
the complexity that would result from a stochastic analysis
of the problem. In [11], such controllers were proposed and
analyzed for systems with no real-time constraints. The on-line
control problem with real-time constraints that we study in this
paper is clearly much harder, since one must guarantee that all
tasks meet their deadlines without full arrival time knowledge.
In the RH approach, the idea of using a “lookahead” window
exploits the result in [4] mentioned above for off-line control:
over this window we are actually solving an off-line problem
(made easier by the knowledge that its solution is a static
controller) based on the limited future information available
within it. In addition, we establish a number of attractive
properties of the RH controller, including (i) the fact that it
still guarantees all real-time constraints (if the original off-line
optimization problem is feasible), and (ii) the fact that the
error introduced relative to the optimal control can actually
be zero over segments of the sample path of the system. Our
results are general and apply to all optimal control settings
described above, as long as the cost function of interest is
strictly convex and monotonically decreasing (or increasing,
depending on the control variables we use).

In section II, we present our system model and formulate the
optimization problem. The RH control approach is described in
Section III. Section IV discusses a number of properties of the
RH controller. Some simulation results illustrating the derived

properties are given in Section V. In addition, we present some
results of RH control without any future task information in
Section VI, and our conclusions and discussions in Section
VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system we consider is characterized by the event-
driven dynamics (4), where ai is the arrival time of task
i = 1, 2, . . . , N , and xi is the time when task i completes
service. We assume a first-come-first-served (FCFS) and non-
preemptive queueing model based on several key observations:
(i) preemptive models involve multi-party action and are
generally costly if not infeasible in some applications (such
as the Dynamic Transmission Control (DTC) problem where
one cannot preempt a packet already in transmission [3]),
(ii) the FCFS policy is the simplest among nonpreemptive
models and operational simplicity is essential in applications
for power-limited devices, and (iii) among nonpreemptive
models, there is no one policy that obviously outperforms
FCFS (for example, a nonpreemptive Earliest Deadline First
policy is actually equivalent to a FCFS nonpreemptive policy).

Let us first briefly review the off-line version of the problem
(i.e., when {ai}, i = 1, . . . , N is known) where a static
controller is optimal [4]. Task i consists of a number of
operations μi and let τi be a control variable representing the
processing time per operation for task i = 1, . . . , N which is
kept fixed throughout [max(ai, xi−1), xi). Thus, s(zi, ui) in
(4) reduces to τiμi and (3) is no longer needed in the problem
formulation that follows. We require that 0 < τmin ≤ τi ≤
τmax, i = 1, ..., N , where τmin and τmax are given. We also
require that each task i be completed by a given deadline d i

and consider the optimization problem

Q(1, N) : min
τ1,...,τN

∑N
i=1 μiθ(τi)

s.t. τi ≥ τmin, i = 1, . . . , N
xi = max(xi−1, ai) + τiμi ≤ di,
i = 1, . . . , N, x0 = a1

where the function θ(τi) represents the cost per operation
associated with task i under control τi (e.g., the energy
consumed). Note that the constraints τi ≤ τmax are removed
in Q(1, N) above. This will not affect the optimal solution to
the problem, since from Lemma 2 in [4], solving Q(1, N) and
substituting τmax for those τ ∗

i > τmax gives the same optimal
solution as the problem with constraints τi ≤ τmax included.
Throughout our work, we will also assume the following.

Assumption 1 θ(τi) is strictly convex, differentiable, and
monotonically decreasing in τi.

An interpretation for θ(τi) and an explicit form can be
obtained depending on the application of interest. For instance,
in Dynamic Voltage Scaling (DVS) for power-limited wireless
systems, such as sensor networks, θ(τi) represents the CPU
energy per operation [8],[12] and one controls the processing
voltage. In Dynamic Transmission Control (DTC), θ(τ i) is
the transmission energy used per bit [13],[3] and one controls
transmission power.



3

Problem Q(1, N), even with a convex cost function, is hard
to solve due to the nondifferentiability of the max functions in
the constraints. In [14] this problem was studied without the
constraints xi ≤ di, and a decomposition algorithm termed
the Forward Algorithm (FA) was derived. In particular, instead
of solving this complex nonlinear optimization problem, we
can decompose the optimal sample path to a number of
“busy periods”. A busy period (BP) is a contiguous set of
tasks {k, ..., n} such that the following three conditions are
satisfied: xk−1 < ak, xn < an+1, and xi ≥ ai+1, for every
i = k, . . . , n − 1. The FA decomposes the entire sample path
into BPs and replaces the original problem by a sequence of
simpler convex optimization problems, one for each BP; as
shown in [14], the solution is identical to that of the original
problem. In [15] it is shown that the presence of x i ≤ di in
Q(1, N) leads to an efficient algorithm that decomposes the
sample path even further and does not require solving any
optimization problem at all. We shall also make use of the
concept of a “critical” task: a task i is said to be critical if it
departs at the arrival time of the next task i+1, i.e., xi = ai+1.
This helps us define a block as a contiguous set {k, . . . , n},
1 ≤ k ≤ n ≤ N , such that xk−1 ≤ ak, xn ≤ an+1, and the
set {k, . . . , n − 1} contains no critical tasks.

Whereas in [15] Q(1, N) was studied under the premise that
the off-line controller is static, the main result in [4] asserts that
the unique optimal solution to this problem is indeed (under
Assumption 1) a static control, i.e., a processing rate f i =
1/τi = constant for all t ∈ [max(ai, xi−1), xi). Unlike [4] and
[15] where the off-line version of the problem was considered,
we shall address next the more challenging on-line control
problem. We will make use of some results in [15] and [4] in
our analysis. We will also use {τ ∗

i } and {x∗
i }, i = 1, . . . , N ,

to denote the optimal solution of problem Q(1, N) and the
corresponding task departure times.

III. THE RECEDING HORIZON (RH) ON-LINE CONTROL

SCHEME

Whereas in off-line control all {ai}, i = 1, . . . , N , are
known in advance, the main challenge for on-line control is
the lack of any future task information. This leads to two dif-
ficulties in designing an on-line controller: (i) optimization is
hard to carry out on the fly, and (ii) it is hard to guarantee real-
time constraints. Our goal is to develop an on-line controller
that addresses both difficulties.

In developing a Receding Horizon (RH) framework, we
assume the knowledge of future task information at time t
is limited to a “lookahead window” [t, t + H ] for some given
H , including each task’s arrival time, deadline and number of
operations. Task information beyond this window is unknown.
Note that H = 0 is a special case included in our analysis,
where the controller acts using only information for tasks that
have already arrived and remain unprocessed at a decision
time. The RH approach works in a recursive way: at each deci-
sion point, the controller solves an optimization problem over
the planning horizon H based on all collected information;
control is applied to the next task only, and the same procedure
is repeated at the next decision point. Based on [4], we know

that the optimization problem over H has an optimal solution
given by static control (i.e., τ ∗

i is fixed throughout processing
task i). This implies that the natural points for invoking the
controller are task departure times. In addition, using task
departures, rather than arrivals, as the RH decision points has
two additional practical advantages: (i) As mentioned earlier,
adjusting controls during task execution is costly or infeasible
for some applications, such as Dynamic Transmission Control
(DTC), and (ii) In periods of high task arrival traffic, the RH
controller may have to be repeatedly updated with every new
arrival, potentially leading to instabilities.

A. Worst-case Estimation

Unlike cases with no real-time constraints (e.g., [11]), the
lack of future information makes it hard to guarantee the
satisfaction of the real-time constraints in our system. For
example, suppose task i needs to be processed immediately
upon its arrival using the fastest speed possible in order to
meet its deadline. Then, a feasible control must finish all
other tasks arriving before i by the arrival time of this task.
When applying RH control, if the RH window size H is not
large enough, the controller will not learn this information
sufficiently early; consequently, task i may fail to meet its
deadline due to backlogged tasks present when it arrives. This
would not happen in an off-line solution, where exact task
information is known a priori and allows to optimally plan
accordingly.

The situation described above motivates us to incorporate a
worst-case estimation process into our RH controller. We will
show in Theorem 1 that doing so can guarantee all deadlines,
provided a feasible solution exists for the off-line control
problem. In particular, we will show that the RH controller
gives rise to task departures that occur no later than those
on the optimal sample path. Moreover, if no feasible solution
exists in the off-line problem, the RH controller attempts to
complete task processing as early as possible.

Before explaining the worst case estimation process, we
define the following. Let x̃t be the departure time of task
t on the RH state trajectory, which is also a decision point
when the RH controller is invoked with lookahead window
H . Let τ̃t be the control associated with task t as determined
by the RH controller. When task t + 1 starts a new BP (i.e.,
at+1 > x̃t), then the RH controller does not need to act until
at+1 rather than x̃t; for notational simplicity, we will still use
x̃t to represent the decision point for task t + 1 (i.e., the time
when the control τ̃t+1 is determined). Let h denote the last
task included in the window that starts at the current decision
point x̃t, i.e.,

h = arg max r≥t{ar : ar ≤ x̃t + H}.
Note that although the value of h depends on t, for notational
simplicity, we will omit this dependence and only write h t

when it is necessary to indicate dependence on t. When the
RH controller is invoked at x̃t, it is called upon to determine
τ̃i, the control associated with task i for all i = t + 1, . . . , h,
and let x̃i denote the corresponding departure time of task i
which is given by x̃i = max(x̃i−1, ai)+τ̃iμi. The values of x̃i



4

and τ̃i are initially undefined, and are updated at each decision
point x̃t for all i = t + 1, . . . , h. Control is applied to task
t + 1 only. That control and the corresponding departure time
are the ones showing in the final RH sample path. In other
words, for any given task i, x̃i and τ̃i may vary over different
planning horizons, since optimization is performed based on
different available information. It is only when task i is the
next one at some decision point that its control and departure
time become final.

Given these definitions, we are now ready to discuss the
worst case estimation process to be used. If h = N , then
the optimization process is finalized, so let us only consider
the more interesting case when h < N . Then, our worst case
estimation pertains to the characteristics of task h+1, the first
one beyond the current planning horizon determined by h, i.e.,
its arrival time, deadline, and number of operations which are
unknown. We define task arrival times and task deadlines for
i = t + 1, . . . , h + 1 as follows:

ãi =
{

ai, if t + 1 ≤ i ≤ h
x̃t + H, if i = h + 1 (5)

d̃i =
{

di, if t + 1 ≤ i ≤ h
ãh+1 + τminμh+1, if i = h + 1 (6)

In (5), the arrival times of tasks i = t + 1, . . . , h are known
and we introduce a “worst case” estimate for the first unknown
task beyond x̃t + H , i.e., we set it to be the earliest it could
possibly occur. In (6), the deadlines of tasks i = t + 1, . . . , h
are known and we introduce a “worst case” estimate for the
first unknown task’s deadline to be the tightest possible, since
τmin is the minimum feasible time per operation. Note that
μh+1 is in fact unknown at time x̃t, but we will see that this
does not affect our optimization process as the value of d̃h+1

is not actually required for analysis purposes. We point out
that we do not have to worry about estimates for the unknown
tasks beyond h+1 (this is because of the FCFS nature of our
system).

Therefore, the optimization problem the RH controller faces
at time x̃t is over tasks t + 1, . . . , h with the added constraint
that they must all be completed by time ãh+1 = x̃t +H . This
is equivalent to redefining d̃i as

d̃i =
{

di, if t + 1 ≤ i ≤ h
min(dh, ãh+1), if i = h

(7)

Our on-line RH control problem at decision point x̃ t will be
denoted by Q̃(t + 1, h) and is formulated as follows:

Q̃(t + 1, h) : min
τ̃t+1,...,τ̃h

∑h
i=t+1 μiθ(τ̃i)

s.t. τ̃i ≥ τmin, i = t + 1, . . . , h.

x̃i = max(x̃i−1, ai) + τ̃iμi ≤ d̃i,
i = t + 1, . . . , h, x̃t known.

Note that setting t = 0 and h = N yields the off-line
problem Q(1, N) defined earlier. In fact, we can see that
Q̃(t + 1, h) is just an off-line optimization problem with
exact information provided for tasks t+1, . . . , h. The optimal
solution to Q̃(t + 1, h) gives the controls over the planning
horizon at decision point x̃t. The corresponding departure
times are x̃i, i = t+1, . . . , h, for all tasks within the planning

horizon. It should be clear that, unlike Q(1, N), in Q̃(t+1, h)
we do not have at our disposal any task arrival information
beyond x̃t + H , therefore the departure times obtained by
the RH controller are clearly sub-optimal and influenced by
the worst-case estimation necessitated by the requirement to
satisfy all real-time constraints. However, we emphasize again
that at decision point x̃t, although Q̃(t+1, h) is solved for all
tasks i = t+1, . . . , h, control is applied to task t+1 only. As
we will see, this provides opportunities to subsequently adjust
the controls and possibly achieve some that coincide with the
optimal ones obtained through off-line optimization.

Let us now formulate a problem Q̃r(t+1, h) to be the same
as Q̃(t + 1, h) except that we relax the constraints τ̃i ≥ τmin:

Q̃r(t + 1, h) : min
τ̃t+1,...,τ̃h

∑h
i=t+1 μiθ(τ̃i)

s.t. τ̃i ≥ 0, i = t + 1, . . . , h.

x̃i = max(x̃i−1, ai) + τ̃iμi ≤ d̃i,
i = t + 1, . . . , h, x̃t known.

Recall that τmin > 0 is the minimum time per operation the
controller can take. In Problem Q̃r(t + 1, h), τ̃i can take any
value that is nonnegative. The following lemma asserts that at
decision point x̃t we only need to solve the simpler problem
Q̃r(t + 1, h) instead of Q̃(t + 1, h) (the proof of this lemma
as well as all other proofs can be found in the Appendix).

Lemma 1 If Q̃(t+1, h) has feasible solutions, then Q̃(t+1, h)
and Q̃r(t + 1, h) have the same solutions.

The lemma implies that if the solution to Q̃r(t + 1, h)
satisfies constraints τ̃i ≥ τmin, then the solution is also the
one for Q̃(t + 1, h). Otherwise, Q̃(t + 1, h) does not have
a feasible solution and the RH controller will apply τmin to
task t + 1, i.e., the highest possible processing speed. Note
that Q̃r(t + 1, h) is always feasible, as long as ai < d̃i,
i = t + 1, . . . , h. As a matter of fact, it is introduced solely
to make the point that explicitly solving Q̃(t + 1, h) can be
accomplished by solving the easier problem Q̃r(t+1, h) using
the highly efficient CTDA algorithm in [15]. Thus, the actual
optimization problem of interest at decision point x̃ t remains
Q̃(t + 1, h) (which can be feasible or infeasible) and our
analysis in what follows applies to it.

B. Relaxing Worst-case Estimation

Problem Q̃(t+1, h) evaluated at decision point x̃t is essen-
tially an off-line optimization problem since the information
of tasks {t + 1, . . . , h} is known. As already mentioned, it
is possible that Q̃(t + 1, h) is not feasible, due to either the
worst-case estimation described above or the infeasibility of
the original off-line problem Q(1, N). In both cases, the RH
controller has to apply the maximum feasible rate to task t+1
(best effort). In the former case, nevertheless, the performance
of the RH controller can be further improved as described next.

Consider the case shown in Figure 1: the RH controller is
invoked at x̃t (which is different from the optimal departure
time of task t, x∗

t ) and the last arrival time contained in the
RH window is ah. In this example, ah and ãh+1 = x̃t + H
are so close to each other that even if task h is processed at



5

tx�

hd

*
tx

ha

1h ta x H� �+ = +

ˆˆ
h

x

ˆ 1h
a

+

Fig. 1. Example of worst case scenario.

the highest possible speed right after its arrival time ah, it still
cannot be finished by time ãh+1 = x̃t + H. Therefore, there
is no way for Q̃(t + 1, h) to be feasible. Note that in this
case the infeasibility of Q̃(t + 1, h) is a result of worst case
estimation; ah+1 may in fact be much larger than ãh+1 and
the off-line problem Q(1, N) may in fact be feasible. In this
case, the controller will apply the highest possible speed to
process task t + 1. However, this is not really necessary if we
can find a task ĥ < h within the RH window such that all tasks
j ∈ {t+1, . . . , ĥ} can be finished by min(dj , aĥ+1), i.e., x̃j <
min(dj , aĥ+1). The reason is that we are using worst case
estimation to guarantee that the deadline of task h + 1 is met,
but as long as some task and all tasks before it are completed
by the arrival time of its next task (not necessarily the last one
within the RH window), this is sufficient to guarantee that
future tasks can meet their deadlines. In other words, there
is no need to use all future task information, if using partial
information is more beneficial.

To formalize the idea above, we define for all j = t +
1, . . . , h:

x̂j = max(x̂j−1, aj) + τminμj , x̂t = x̃t

and observe that x̂j is the departure time of task j (over the
planning horizon starting at decision time x̃t) obtained by
applying the “fastest” possible control τ̃i = τmin to all tasks i
such that t + 1 ≤ i ≤ j ≤ h. We also define:

S = {j : t + 1 ≤ j < h, x̂i ≤ min(di, aj+1) for all i,

t + 1 ≤ i ≤ j}

ĥ =
{

sup S, if S �= ∅,
∞, otherwise

h̃ = min(h, ĥ). (8)

The ĥth task is defined in such a way that the RH controller
has a choice, when Q̃(t+1, h) is infeasible, of formulating the
associated RH control problem with a window ending at a ĥ+1

instead of ãh+1 = x̃t +H . As was the case with the definition
of h, the value of h̃ also depends on t, but for notational
simplicity we will omit this dependence and only write h̃t

when it is necessary to indicate dependence on t. Using this
definition, we also redefine task deadlines in (7) as

d̃j =
{

dj , t + 1 ≤ j ≤ h, j �= h̃

min(dj , ãj+1), j = h̃.
(9)

At decision point x̃t, the proposed RH controller solves
an optimization problem (whose solution was shown to be
efficiently obtained in [15]) over the planning horizon based
on the current available task information and a worst case

estimate of the next unknown task. The optimization problem
is Q̃(t + 1, h̃) with h̃ given in (8). By defining h̃, the
performance of the RH controller can be improved when
Q̃(t + 1, h) is infeasible due to a very conservative estimate
for ah+1, since a lower cost is obtained by allowing longer
processing times compared to the shorter ones imposed by
this conservative estimate; formally, this will be shown in the
results of the next section. Solving Q̃(t + 1, h̃) gives us the
solution over the planning horizon, but we only apply it to task
t + 1. The same procedure is performed when the controller
moves to the next decision point x̃t+1. We reiterate that it
is entirely possible that the off-line control problem Q(1, N)
is infeasible (some real-time constraints cannot be met) due
to heavy arrivals and tight deadlines. In this case, the RH
controller occasionally applies the maximum processing speed.

IV. PROPERTIES OF THE RH CONTROLLER

Clearly, the RH sample path and the optimal sample path
are generally different. Recalling that {τ ∗

i }, i = 1, . . . , N , is
the optimal solution of the off-line problem Q(1, N) which
we assume to be feasible, and {x∗

i } is the corresponding task
departure time sequence, we introduce the error in departure
times evaluated by the RH controller relative to the optimal
controller as follows:

Definition 1 The departure time error for task i is εi = x∗
i −

x̃i.

When applying RH control, we would like ε i to be as
small as possible and possibly have εi = 0 for at least some
segments of the RH sample path. In this section, we explore
the properties of the RH controller by addressing the following
questions: (i) What is the relationship between x∗

i and x̃i? (ii)
Can we identify some departure points on the RH sample path
such that x̃i = x∗

i ? (iii) What are the properties of the error
εi? Before we get into the detailed analysis, we summarize
the main properties of the RH controller to be established:

1) Departure times on the RH sample path are bounded
by those on the optimal sample path, i.e., x̃i ≤ x∗

i , for all i
(Lemma 5 and Theorem 1).

2) At certain decision points, when the RH window size
is large enough, controls and task departure times over the
planning horizon are optimal, i.e., x̃ i = x∗

i , for some i ∈
{t + 1, . . . , h} (Lemmas 6 and 7).

3) Two ways are established to find departure points such
that x̃i = x∗

i (Lemmas 8 and 9 and Theorem 2).
4) If x̃i = x∗

i and x̃j = x∗
j with tasks i and j > i both

within the planning horizon, then x̃k = x∗
k for all k = i, . . . , j

(Theorem 3).
5) At any decision point x̃t, once we identify some i such

that x̃i = x∗
i over the planning horizon, then all the decision

points between t and i can be skipped (Theorem 4). Moreover,
the corresponding errors of these tasks are non-increasing
(Theorem 5).

6) The errors are non-increasing in the RH window size H
(Theorem 6).

Relationship between the optimal and the RH sam-
ple paths. We formulate a generalized optimization problem



6

G(p, q; t1, t2), which is convenient in deriving the results that
follow:

G(p, q; t1, t2) : min
δp,...,δq

∑q
i=p μiθ(δi)

s.t. δi ≥ δmin, i = p, . . . , q
yi = max(yi−1, āi) + δiμi ≤ d̄i,
i = p, . . . , q, yp−1 = āp

āi = max(ai, t1), d̄i = min(di, t2),
i = p, . . . , q

Note that δmin > 0 is given and G(p, q; t1, t2) is a gener-
alization of problems we have already defined. For example,
the off-line problem Q(1, N) is identical to G(1, N ; a1, dN )
and the RH controller’s optimization problem Q̃(t + 1, h) is
identical to G(t+1, h; x̃t, ãh+1). We will use P (p, q; t1, t2) to
denote the optimal cost of processing tasks {p, . . . , q}, from
time t1 to t2 if G(p, q; t1, t2) is feasible. If the problem does
not have a feasible solution, P (p, q; t1, t2) is undefined.

Lemma 2 Under Assumption 1, G(p, q; t1, t2) has a unique
optimal solution for any p ≤ q, t1 < t2.

While it has been shown in [14] that the optimal sample
path of the system we are considering, but without real-time
constraints, can be decomposed into busy periods and blocks
as defined in Section 2, the next lemma shows another decom-
position property of the optimal sample path of G(p, q; t1, t2).

Lemma 3 Let y∗
m be the optimal departure time of task m ∈

{p, . . . , q} in G(p, q; t1, t2). For any i, j such that p ≤ i < j ≤
q, the unique optimal solution to G(i, j; y∗

i−1, y
∗
j ) is δ∗i , . . . , δ∗j ,

and the corresponding optimal departures are y ∗
i , . . . , y∗

j .

This lemma shows that the optimal sample path of
G(p, q; t1, t2) can be decomposed by optimal departure points.
Solving this control problem is equivalent to combining the
optimal solutions to the sub-problems obtained by partition-
ing through these optimal departure points. Obviously, this
decomposition cannot be used to calculate the optimal sample
path directly, since y∗

i−1, y∗
j are unknown; it is, however, very

helpful in our ensuing analysis. In addition, note that because
G(p, q; t1, t2) is the general form of the optimization problems
we are dealing with, the results above apply to Q(1, N),
Q̃(t + 1, h̃) as well.

The next lemma is an auxiliary one which is crucial in our
analysis:

Lemma 4 Let y
′
m and y

′′
m be the optimal departure time

of task m ∈ {p, . . . , q} in G(p, q; t
′
1, t

′
2) and G(p, q; t

′′
1 , t

′′
2 )

respectively, where t
′
1 < t

′
2, t

′′
1 < t

′′
2 . Suppose ap ≤ t

′
1 ≤ t

′′
1 ,

and t
′
2 ≤ t

′′
2 ≤ dq. Then, y

′
m ≤ y

′′
m, for all m.

With the help of Lemmas 2 through 4, we can characterize
the relationship between departure times on the RH sample
path and the optimal sample paths as follows:

Lemma 5 At any decision point x̃t, x̃i ≤ x∗
i , i ∈ {t +

1, . . . , h̃}.
This lemma shows that the departure times evaluated by

the RH controller at x̃t are upper bounded by the optimal

departure times. Recall, however, that at x̃t we solve an
optimization problem over all tasks in the current planning
horizon, but only apply control to the next task t + 1. Thus,
this result does not imply that all departure times in the final
RH sample path satisfy this relationship. This more general
result is established next.

Theorem 1 x̃t ≤ x∗
t , 1 ≤ t ≤ N.

This result shows that the RH controller is more conserva-
tive than the optimal controller. Therefore, our RH controller
can guarantee all task deadlines, provided feasible solutions
exist for Q(1, N).

Identification of optimal departure points on the RH
sample path. We shall next address the second issue men-
tioned at the beginning of this section: how to identify possibly
optimal departure points on the RH sample path. As we will
see, accomplishing this has three major benefits: (i) obtain
optimal controls over segments of the RH sample path, (ii)
prevent departure time errors from accumulating, and (iii)
save considerable computation time in our RH optimization
process. We begin by showing that under certain conditions,
and when the RH window size is large enough, the RH
controller yields optimal controls.

Lemma 6 Let (k, n) be a BP on the optimal sample path and
x̃k−1 be the current decision time on the RH sample path with
h ≥ n + 1. Let τ̃i, i ∈ {k, . . . , h}, be the optimal solution to
Q̃(k, h), and x̃i be the corresponding departure time. Then
x̃i = x∗

i and τ̃i = τ∗
i for all i = k, . . . , n.

Lemma 7 Let (k, n) be a block on the optimal sample path
and x̃k−1 be the current decision time on the RH sample path
with h̃ ≥ n+1. Let τ̃i, i ∈ {k, . . . , h̃}, be the optimal solution
to Q̃(k, h̃),and x̃i be the corresponding departure time. Then
x̃i = x∗

i , τ̃i = τ∗
i , for all i = k, . . . , n.

These results show that at certain decision points, when
the RH window size H is large enough, our control over
the planning horizon is error-free. In Lemma 6, the condition
that (k, n) is a BP on the optimal sample path can be easily
checked by the fact that x∗

n = dn < an+1 established in [15].
Therefore, the RH controller may apply all controls determined
at x̃k−1 to all k, . . . , n, instead of applying control to task k
only. In Lemma 7, recall that a block may end with a critical
task, i.e., x∗

n = an+1 on the optimal sample path, but the
RH controller cannot identify such points. However, as shown
next, even if the RH controller operates one task at a time,
the RH controls for the block (k, n) are still optimal in the
final RH sample path. In fact, we show that even when H is
not large enough, the RH planning horizon can still contain
departure times that coincide with the optimal ones.

The next lemma is very helpful in further decomposing the
optimal sample path from the viewpoint of the RH controller.

Lemma 8 At any decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t+1, h̃) and x̃i be the correspond-
ing departure time. If there exists some m ∈ {t + 1, . . . , h̃}
such that x̃m = dm, then x∗

m = dm.



7

Thus, as long as we find a task within the current planning
horizon which departs at its deadline, this task must also
depart at its deadline on the optimal sample path. This lemma
helps us prevent errors from accumulating on the RH sample
path. Moreover, by knowing this future optimal departure
time, we will see that we do not have to perform any further
computation until that time.

Lemma 8 provides one way to identify optimal departure
points on the RH planning horizon. In what follows, we will
determine another way, based on critical tasks on the optimal
sample path, i.e., tasks i such that x∗

i = ai+1. Therefore, if
we can find a task i which is critical on the optimal sample
path, then we can identify its optimal departure point which
is given by ai+1. As we will see, under some conditions and
at the expense of some extra work, we can indeed identify a
critical task on the optimal sample path. Let us start with an
auxiliary lemma.

Lemma 9 At any decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t + 1, h̃) and {x̃i} be the
corresponding departure times. If (i) ãi+1 < di �= x̃i for
all i, and (ii) task c is critical on the optimal sample path of
G(t + 1, h̃; x̃t, dh̃), t + 1 ≤ c < h̃, then x̃c = ac+1.

This lemma helps us establish the following result which
provides an alternative to Lemma 8 for identifying departure
times on the planning horizon that are optimal.

Theorem 2 At any decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t + 1, h̃) and {x̃i} be the
corresponding departure times. Suppose ãi+1 < di �= x̃i, for
all i. Then, the necessary condition for task c, t + 1 ≤ c < h̃,
to be critical on the optimal sample path is that x̃c = ac+1.
A sufficient condition for task c to be critical on the optimal
sample path is that x̃t = x∗

t and task c is critical on the
optimal sample path of G(t + 1, h̃; x̃t, dh̃).

This theorem shows that once we find some tasks are
critical over the planning horizon and the current decision
point coincides with the corresponding optimal departure, we
have a chance to identify critical tasks on the optimal sample
path at the expense of solving G(t + 1, h̃; x̃t, dh̃): if a task is
critical on the optimal sample path of G(t+1, h̃; x̃t, dh̃) then
it is also critical on the optimal sample path.

We now have two ways to identify optimal departure points
on the RH planning horizon. One way is to find a departure
point x̃m in the planning horizon such that x∗

m = dm. The
other way is to find a critical task on the optimal sample path
of G(t + 1, h̃; x̃t, dh̃) when x̃t = x∗

t .
The next theorem shows that if a decision point is such

that x̃t = x∗
t , then, regardless of how large the RH window

is, if we can identify some m ∈ {t + 1, . . . , h̃} such that
x̃m = x∗

m, then the optimal controls for tasks {t + 1, . . . , m}
are immediately obtained over the current planning horizon.

Theorem 3 At any decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t + 1, h̃) and {x̃i} be the
corresponding departure times. If (i) x̃t = x∗

t , and (ii) there

exists some m ∈ {t + 1, . . . , h̃} such that x̃m = x∗
m, then

x̃i = x∗
i , τ̃i = τ∗

i , for all i = t + 1, . . . , m.

One advantage of identifying these optimal departure points
is that we can prevent errors from accumulating. Another
advantage is that once two such points are identified we do
not need to perform any computation between them, thus
saving time and computational effort. In energy-constrained
applications (such as in wireless sensor networks), this can
become quite critical. However, a question still remains:
although we can identify a set of optimal controls over the
planning horizon, will these controls remain the same over
future planning horizons? Before we answer this question, let
us introduce x̃m(t) to be the RH departure time of task m
evaluated at x̃t. At decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t + 1, h̃) and {x̃i} be the
corresponding departure times. Then, we can write x̃m(t) =
x̃m. We will start with an auxiliary lemma below which will
help us establish Theorem 4.

Lemma 10 At any decision point x̃t, suppose there exists
some m ∈ {t + 2, . . . , h̃} such that x̃m(t) = dm or some
m ∈ {t +2, . . . , h̃− 1} such that x̃m(t) = x∗

m = am+1. Then
x̃m(i) = x∗

m at decision point x̃i, t + 1 ≤ i ≤ m − 1.

Theorem 4 At any decision point x̃t, suppose there exists
some m ∈ {t + 2, . . . , h̃} such that x̃m(t) = dm or some
m ∈ {t +2, . . . , h̃− 1} such that x̃m(t) = x∗

m = am+1. Then
x̃j(i) = x̃j(t), for i = t + 1, . . . , m − 1, j = i + 1, . . . , m.

This theorem shows that once an optimal departure point
is identified over the RH planning horizon by Lemma 8 or
Theorem 2, all the RH controls between the current decision
point and this optimal departure point will be the ones in the
final RH sample path. This implies two nice properties of our
RH control: (i) Once an optimal departure point is identified
over the RH planning horizon by Lemma 8 or Theorem 2, we
can apply the RH controls to all tasks j ∈ {t+1, . . . , m} and
skip the optimization procedures for all tasks t + 2, . . . , m,
and (ii) As in Lemma 7 where the RH window size is larger
than a block on the optimal sample path and the RH controller
does not know this fact, we can still obtain optimal controls
for all tasks within the block.

Error Properties of the RH Controller. So far, we have
shown how to identify departure times on the RH sample path
that are optimal. Our next step is to study the departure error
properties of the RH controller.

It has been shown that when the RH controller happens to
act at the starting point of a block on the optimal sample path,
there are conditions under which the error is monotonically
non-decreasing over the planning horizon (Lemma 4.10 in
[16]). However, since we only apply τ̃t+1 at decision time x̃t,
it is possible that the error may decrease at the next execution
point of the RH controller. The next theorem shows that under
some conditions, the error will in fact be non-increasing.

Theorem 5 At any decision point x̃t, let {τ̃i}, i = t+1, . . . , h̃,
be the optimal solution to Q̃(t + 1, h̃) and {x̃i} be the
corresponding departure times. If there exists some m =



8

arg mint+1≤i≤h̃{x̃i : x̃i = x∗
i }, then εi+1 ≤ εi for all

i = t, . . . , m − 1.

This theorem asserts that once an optimal departure x∗
m is

identified by the RH controller, the error will be non-increasing
from the current decision point to x∗

m on the RH sample path.
Finally, we will also show that when applying RH control

the departure error of each task is a non-increasing function
of the RH window size H .

Theorem 6 Suppose we have two RH controllers with window
sizes H1, H2. Let x̃i,1, x̃i,2 be the corresponding departure
times of task i, τ̃i,1, τ̃i,2 the corresponding RH controls of task
i, and εi,1, εi,2 the corresponding departure errors of task i. If
H1 < H2, then x̃i,1 ≤ x̃i,2 and εi,1 ≥ εi,2, for i = 1, . . . , N .

In practice, the information within the RH window is usually
associated with resources such as memory or communication
energy. In general, the larger the RH window size, the more
resources are required; it is natural to expect the performance
of the RH controller to improve with larger RH window size,
as confirmed by Theorem 6.

V. SIMULATION RESULTS

In this section, we present some numerical results obtained
by applying our RH control approach to some simulated
systems. We begin by establishing some notation associated
with different controllers we shall compare: (i) Optimal:
Off-line controller (assumed to be feasible) with exact task
information, (ii) RH1: RH controller with h̃ = h, (iii) RH2:
RH controller with h̃ = min(h, ĥ), (iv) RH3: RH controller
with h̃ = min(h, ĥ) and decision point skipping (recalling
Theorem 4, once an optimal departure point is identified over
a planning horizon, the controller does not have to be invoked
until this point. RH3 skips all decision points between the
current one and an optimal departure point identified over the
current planning horizon).

Experiments were performed for two different traffic pat-
terns: a Poisson arrival process and a bursty arrival pro-
cess. The deadline of each task is uniformly distributed in
[ai + d1, ai + d2]. We also consider two deadline settings for
all tasks: one with “tight” deadlines, the other with “loose”
deadlines. By letting d1 = 5s, d2 = 20s in the former setting,
we expect multiple BPs on the optimal sample path; in the
latter setting with d1 = 50s, d2 = 200s the probability of
the optimal sample path being a single BP is very high. The
mean interarrival time of the Poisson arrival process is set to
5s. For bursty arrivals, the length of a burst is randomly chosen
among integers ranging from 10 to 20, the interval between
two adjacent bursts is uniformly distributed in [50, 100]s, the
interval between two adjacent tasks within the same burst is
uniformly distributed in [1, 2]s and [0, 1]s for tight deadline
setting and loose deadline setting respectively.

Figures 2 and 3 show the relative cost error as a function
of the RH window size H in the case where tasks arrive in a
bursty fashion. Similar results are obtained for the Poisson
arrival process and are omitted. The relative cost error is
defined as: (cost under controller RHi - optimal cost) / optimal

cost with i = 1, 2, 3. The results are from 10 simulation
runs with 500 tasks in each run. It can be seen that all
RH controllers approach the optimal off-line controller with
increasing H , but RH2 and RH3 (whose performance is
virtually indistinguishable as expected by Theorem 4) are
significantly superior to the more conservative RH1. When
the deadlines are loose, that is, the optimal sample path is
very likely to contain only one BP, all RH controllers need a
larger RH window to approach the optimal off-line controller.
In Figure 3, note that the performance of RH1 deteriorates after
H = 25s. This is because when H is around 25s, x̃t + H is
more likely to fall into the idle period between two sets of
bursty tasks for the particular parameter settings; when H is
smaller or larger, x̃t + H is more likely to fall into a set of
bursty tasks. Due to worst-case estimation, the latter case is
more likely to make Q(t+1, h) infeasible, and then force the
RH controller to apply τmin to task t + 1.

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance of RH controllers

RH Window size(s)

R
el

at
iv

e 
co

st
 e

rr
or

Optimal
RH

1
RH

2
RH

3

Fig. 2. Bursty arrivals, tight deadlines.

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5
Performance of RH controllers

RH Window size(s)

R
el

at
iv

e 
co

st
 e

rr
or

Optimal
RH

1
RH

2
RH

3

Fig. 3. Bursty arrivals, loose deadlines.

Figures 4-5 are plots of the departure errors ε i. In this case,
the results are obtained with a Poisson arrival process over 100
tasks. It is worth observing that there exist several intervals
over which εi = 0.

Based on these numerical results, (i) We verify that RH
controllers using the window boundary h̃ = min(h, ĥ) clearly
outperform those using the original window boundary h, (ii)
We observe that the performance of our RH controllers rapidly



9

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
Departure errors of RH Controllers

Task Departures

D
ep

ar
tu

re
 e

rr
or

s

RH
1

RH
2

RH
3

Fig. 4. Poisson arrivals, tight deadlines, H = 10s.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
Departure errors of RH3 controller

Task departures

D
ep

ar
tu

re
 e

rr
or

s

H=0
H=5
H=10
H=15

Fig. 5. Poisson arrivals, tight deadlines.

approaches the optimal one when using h̃ and increasing H ,
(iii) We confirm Theorem 4, i.e., the property that using
the window boundary h̃, once an optimal departure point is
identified in the current planning horizon, deactivating the
controller up to that point does not downgrade performance,
while accelerating RH control.

VI. RH CONTROL WITHOUT FUTURE TASK INFORMATION

The RH controller we proposed in Section III relies on
exact task information within the RH window. An interesting
question is “what is the performance of the RH controller
without exact future task information?” In some cases, for
example, only statistical information about future tasks is
available (e.g., the arrival rate). In general, hard deadline satis-
faction cannot be 100% guaranteed if future task information
is unavailable and we want to avoid an overly conservative
worst-case approach as in Section III. The goal then becomes
the minimization of the fraction of tasks that violate their
deadlines.

In what follows, we present some numerical results when
future task information is unavailable and the RH controller
does not know the task arrival process. We define RH4 to
be an RH controller with future task estimation as follows:
the controller assumes that future tasks arrive periodically
with period 1/λ, where λ is an estimated arrival rate. For
example, suppose H = 50, λ = 0.2; then at any decision

point t, the controller assumes that 10 tasks will arrive at time
t+5, t+10, . . . , t+50 respectively. Note that at each decision
point, the optimization process includes not only estimated
future tasks, but also backlogged ones. Controller RH4 works
exactly the same as RH2 and RH3 do, i.e., the controller
performs optimization over the planning horizon, and applies
control to the next task only. The only difference is that future
task information is totally unknown to RH4. Specifically, RH4
will use an estimated arrival rate λ = 0.2 in the following
experiments.

In the first example shown in Figs. 6 and 7, we consider
equal sized tasks with di = ai +d and a bursty arrival process
(described in Section V). For example, these tasks can be
equal sized audio/video packets which must be processed or
transmitted over a certain fixed interval after their arrivals to
guarantee a Quality-of-Service (QoS) requirement.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
Performance of RH controllers (Bursty arrivals, d=75) 

RH Window size(s)

R
el

at
iv

e 
E

rr
or

Optimal
RH

1
RH

2
RH

4

Fig. 6. Bursty arrivals, fixed loose deadlines.

0 10 20 30 40 50 60 70 80 90 100
−80

−70

−60

−50

−40

−30

−20

−10

0
Departure/deadline relationship of RH Controllers (Bursty arrivals, d=75, H=10)

Task Departures

D
iff

er
en

ce
 b

et
w

ee
n 

de
pa

rt
ur

e 
tim

e 
an

d 
de

ad
lin

e

RH
1

RH
2

RH
4

Fig. 7. Bursty arrivals, fixed loose deadlines, H = 10.

Figure 6 shows the relative cost of RH4 compared to
RH1 and RH2. It can be seen that RH4 has a lower cost
than both RH1 and RH2. This is because RH1 and RH2 are
aiming at minimizing the cost and guaranteeing hard deadline
satisfaction at the same time, while RH4 does not account
for deadline satisfaction before a task actually arrives. In this
setting, task deadlines are easily met so it is not surprising that
RH4 incurs the lowest cost. Figure 7 shows the relationship
between task departure times and deadlines when RH window



10

size is H = 10. It turns out that RH4 operates close to the
deadlines, while RH1 and RH2 are far from them. This implies
that although RH4 incurs less cost, it may not be able to
guarantee hard deadline satisfaction in some cases.

In the next example shown in Figs. 8 and 9, we consider a
Poisson arrival process with λ = 0.2, deadlines di uniformly
distributed between [ai + c1, ai + c2], where c1 and c2 are
constants, and the RH4 controller uses ai + c1 + (c2 − c1)/2
to estimate task i’s deadline. In this setting, task deadlines are
tight. Therefore, as shown in Fig. 9, RH4 cannot guarantee
hard deadline satisfaction. What happens is that RH4 uses a
low speed to process tasks initially; noticing that certain tasks’
deadlines are hard to be met after their arrivals, RH4 will then
use a high speed to compensate. This kind of strategy will
incur a higher cost than RH1 and RH2.

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5
Performance of RH controllers (lambda=0.2, c1=5, c2=10)

RH Window size(s)

R
el

at
iv

e 
E

rr
or

Optimal
RH

1
RH

2
RH

4

Fig. 8. Poisson arrivals, tight deadlines.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25
Hard deadline satisfaction (lambda=0.2, c1=5, c2=10)

RH Window size(s)

P
er

ce
nt

ag
e 

m
is

si
ng

 d
ea

dl
in

es

Fig. 9. Poisson arrivals, tight deadlines, H = 10.

VII. CONCLUSIONS AND DISCUSSION

We have proposed a Receding Horizon (RH) controller for
a class of DES with real-time constraints in order to overcome
the absence of future information in on-line control settings.
The RH controller has several attractive properties, including
(i) the fact that it still guarantees all real-time constraints (if
the original off-line optimization problem is feasible), (ii) the
error introduced relative to the optimal control can actually

be zero over segments of the sample path of the system, and
(iii) the error relative to the optimal task departure times is
decreasing under certain conditions.

Some practical issues need to be considered when imple-
menting the RH controller. Consider the case of heavy arrival
traffic with tight deadlines. If the controller is not sufficiently
fast, it is possible that the task queue will build up. However,
there is also no need for optimization in such cases, since the
system must operate at its maximum processing rate, i.e., the
controller simply applies the maximum possible control at its
disposal. In addition, the controller may have the option to
drop tasks with extremely tight deadlines that cannot be met
anyway.

The RH window size H is a system design parameter
which highly depends on the specific application at hand.
As indicated by Theorem 6, it is possible for the system
performance to be improved by choosing a larger H . However,
with a larger RH window size, the optimization problem the
RH controller needs to solve at each decision point has a
higher dimensionality as well. Clearly, trade-offs exist when
determining the RH window size. Fortunately, it has been
shown in [15] that the CTDA algorithm, which is used by
the RH controller to solve the Q̃ problem at each iteration,
has a modest complexity of O(N 2) (N is the number of tasks
evaluated).

Our future work is focused on answering the following
questions: (i) How can we design a good RH controller if the
task information within the RH window is not accurate? (ii)
Can we use RH control when there is no future information
available at all? (iii) How can we adapt the RH controller to
incorporate stochastic characterizations of the task processes?

VIII. APPENDIX

Proof: [Lemma 1] Without loss of generality, we assume
the optimal sample path of problem Q̃(t + 1, h) contains
several BPs. From Lemma 1 in [15], a BP is identified by
the deadline-arrival information, i.e., task k starts a BP, if
ak > dk−1 and task n ends a BP if dn < an+1. Let contiguous
tasks {k, . . . , n} form a BP on the optimal sample path of
Q̃(t + 1, h). We formulate the optimization problem Q̃(k, n)
for this BP as follows:

Q̃(k, n) : min
τ̃k,...,τ̃n

∑n
i=k μiθ(τ̃i)

s.t. τ̃i ≥ τmin, i = k, . . . , n

x̃i = ak +
∑i

j=k τ̃jμj , i = k, . . . n,

ai+1 ≤ xi ≤ d̃i, i = k, . . . , n − 1, xn = d̃n.

We also define Q̃r(k, n) to be the same as Q̃(k, n) except
that we replace the first constraint by τ̃i ≥ 0, i = k, . . . , n.
Because, by assumption, Q̃(t + 1, h) is feasible, Q̃r(k, n)
is also feasible. From Proposition 4 in [15], Q̃(k, n) and
Q̃r(k, n) have the same solutions. The same result is also
applicable to all BPs on the optimal sample path of Q̃(t+1, h).
Since solving Q̃(t + 1, h) is equivalent to combining the
solutions to these BPs, Q̃(t + 1, h) and Q̃r(t + 1, h) have
the same solutions. �

Proof: [Lemma 2] The proof is similar to the one for
Lemma 1 in [4]. From Lemma 3 in [15], y ∗

i < āi+1 iff



11

d̄i < āi+1. Therefore, the BP structure of the optimal sample
path of G(p, q; t1, t2) is unique, since it depends entirely
on {d̄i} and {āi}. Suppose we have a BP (k, n) starting
from task k and finishing at task n. The set of all feasible
controls {δk, . . . , δn} is a convex set and the cost function
of G(p, q; t1, t2) is a strictly convex function by Assumption
1. Therefore, the optimal solution within a BP is unique and
G(p, q; t1, t2) has a unique optimal solution. �

Proof: [Lemma 3] We use a contradiction argument
to prove δ∗i , . . . , δ∗j is the unique optimal solution to
G(i, j; y∗

i−1, y
∗
j ). Suppose δ̄i, . . . , δ̄j is an optimal solution

instead, therefore,

j∑
k=i

μkθ(δ̄k) ≤
j∑

k=i

μkθ(δ∗k) (10)

Replacing the optimal controls δ∗
i , . . . , δ∗j by δ̄i, . . . , δ̄j

, {δ∗p, . . . , δ̄i, . . . , δ̄j , . . . , δ
∗
q} is a feasible solution of

G(p, q; t1, t2). Its cost can be written as:

P̄ (p, q; t1, t2) =
q∑

k=p

μkθ(δ∗k) −
j∑

k=i

μkθ(δ∗k) +
j∑

k=i

μkθ(δ̄k)

Invoking (10),

P̄ (p, q; t1, t2) ≤ P (p, q; t1, t2) =
q∑

k=p

μiθ(δ∗i )

This contradicts the fact that δ∗
p, . . . , δ∗q is the unique optimal

solution of G(p, q; t1, t2) proven in Lemma 2. Therefore, the
unique optimal solution of G(i, j; y∗

i−1, y
∗
j ) is δ∗i , . . . , δ∗j , and

the corresponding optimal departures must be y ∗
i , . . . , y∗

j . �
The following lemma will be used in the proof of Lemma

4.

Lemma 11 Let P (p, q; t1, t2) be the optimal cost of process-
ing tasks {p, . . . , q} in G(p, q; t1, t2). Suppose G(p, q; t′1, t

′
2),

G(p, q; t′′1 , t′′2), G(p, q; t′′1 , t′2) and G(p, q; t′1, t
′′
2) are all feasi-

ble, and t′1 ≤ t′′1 < t′′2 ≤ t′2. Then,

P (p, q; t′′1 , t′′2)−P (p, q; t′1, t
′′
2 ) ≥ P (p, q; t′′1 , t′2)−P (p, q; t′1, t

′
2).

Proof: Based on Assumption 1, P (p, q; t1, t2) is convex and
differentiable in both t1 and t2 and it satisfies

∂P

∂t1
≥ 0,

∂P

∂t2
≤ 0, (11)

and
∂2P

∂t1∂t2
≤ 0,

∂2P

∂t2∂t1
≤ 0. (12)

We can write the left hand side of the desired result as

P (p, q; t′′1 , t′′2 ) − P (p, q; t′1, t
′′
2 ) =

∫ t′′1

t′1

∂P

∂t1

∣∣∣∣
t2=t′′2

dt1 (13)

and the right hand side as

P (p, q; t′′1 , t′2) − P (p, q; t′1, t
′
2) =

∫ t′′1

t′1

∂P

∂t1

∣∣∣∣
t2=t′2

dt1. (14)

Using (11), (12) and assumption t ′′2 ≤ t′2,

∂P

∂t1

∣∣∣∣
t2=t′′2

≥ ∂P

∂t1

∣∣∣∣
t2=t′2

≥ 0, ∀t1 ∈ [t′1, t
′′
1 ]. (15)

Combining (13)-(15) yields

P (p, q; t′′1 , t′′2)−P (p, q; t′1, t
′′
2) ≥ P (p, q; t′′1 , t′2)−P (p, q; t′1, t

′
2).

�
Proof: [Lemma 4] In G(p, q; t

′
1, t

′
2), tasks {p, . . . , q} are

processed from time t
′
1 to t

′
2, while in G(p, q; t

′′
1 , t

′′
2 ), tasks

{p, . . . , q} are processed from time t
′′
1 to t

′′
2 . Since ap ≤ t

′
1 ≤

t
′′
1 , recalling the definition of G(p, q; t1, t2), we have y

′
p−1 =

t
′
1, y

′′
p−1 = t

′′
1 and y

′
p−1 ≤ y

′′
p−1. Also, since there is no

δi ≤ δmax constraint in G(p, q; t1, t2) and t
′
2 ≤ t

′′
2 ≤ dq, we

have y
′
q = t

′
2, y

′′
q = t

′′
2 and y

′
q ≤ y

′′
q .

Invoking Lemma 2, each of G(p, q; t
′
1, t

′
2) and

G(p, q; t
′′
1 , t

′′
2 ) has a unique optimal solution. From Lemma

3, problem G(p, q; y
′
p−1, y

′
q) can be decomposed by solving

G(p, m; y
′
p−1, y

′
m) and G(m + 1, q; y

′
m, y

′
q) respectively, and

then combining the optimal solutions. Similarly, problem
G(p, q; y

′′
p−1, y

′′
q ) can be decomposed into subproblems

G(p, m; y
′′
p−1, y

′′
m) and G(m + 1, q; y

′′
m, y

′′
q ). Recalling that

P (p, q; t1, t2) is defined as the cost of G(p, q; t1, t2), we
obtain:

P (p, m; y
′
p−1, y

′
m) + P (m + 1, q; y

′
m, y

′
q) < (16)

P (p, m; y
′
p−1, y

′′
m) + P (m + 1, q; y

′′
m, y

′
q)

and

P (p, m; y
′′
p−1, y

′′
m) + P (m + 1, q; y

′′
m, y

′′
q ) < (17)

P (p, m; y
′′
p−1, y

′
m) + P (m + 1, q; y

′
m, y

′′
q )

Summing the two inequalities above and rearranging terms,
we get:

P (p, m; y
′′
p−1, y

′′
m) − P (p, m; y

′
p−1, y

′′
m)+ (18)

P (m + 1, q; y
′
m, y

′
q) − P (m + 1, q; y

′
m, y

′′
q ) <

P (p, m; y
′′
p−1, y

′
m) − P (p, m; y

′
p−1, y

′
m)+

P (m + 1, q; y
′′
m, y

′
q) − P (m + 1, q; y

′′
m, y

′′
q )

Next, we use a contradiction argument to prove the lemma.
Thus, suppose there exists some m ∈ {p, . . . , q − 1}, such
that y

′
m > y

′′
m. Let t′1 = y′

p−1, t′′1 = y′′
p−1, t′′2 = y′′

m, t′2 =
y′

m. Since G(p, m; t′1, t
′
2), G(p, m; t′′1 , t′′2 ), G(p, m; t′′1 , t′2) and

G(p, m; t′1, t
′′
2) are all feasible, invoking Lemma 11, we obtain

P (p, m; y
′′
p−1, y

′′
m) − P (p, m; y

′
p−1, y

′′
m) ≥ (19)

P (p, m; y
′′
p−1, y

′
m) − P (p, m; y

′
p−1, y

′
m)

Similarly, let t′1 = y′′
m, t′′1 = y′

m, t′′2 = y′
q, t′2 = y′′

q . G(m +
1, q; t′1, t

′
2), G(m+1, q; t′′1 , t′′2), G(m+1, q; t′′1 , t′2) and G(m+

1, q; t′1, t
′′
2 ) are all feasible. Using Lemma 11 again, we have

P (m + 1, q; y
′
m, y

′
q) − P (m + 1, q; y

′′
m, y

′
q) ≥

P (m + 1, q; y
′
m, y

′′
q ) − P (m + 1, q; y

′′
m, y

′′
q )



12

Rearranging items, we get

P (m + 1, q; y
′
m, y

′
q) − P (m + 1, q; y

′
m, y

′′
q ) ≥ (20)

P (m + 1, q; y
′′
m, y

′
q) − P (m + 1, q; y

′′
m, y

′′
q )

Under (19) and (20), we can see that (18) is violated, leading
to a contradiction of our assumption y

′
m > y

′′
m. �

Proof: [Lemma 5] To prove the lemma, we first show
an auxiliary result: at decision point x̃t, 0 ≤ t ≤ N − 1, if
x̃t ≤ x∗

t , then x̃i ≤ x∗
i , for all t + 1 ≤ i ≤ h̃. We consider

two cases:
Case 1: At decision point x̃t, the RH problem Q̃(t + 1, h̃)

has no feasible solutions. Then, τ̃i = τmin, t+1 ≤ i ≤ h̃. Since
x̃t ≤ x∗

t and τ̃i ≤ τ∗
i , it follows that x̃i ≤ x∗

i , t + 1 ≤ i ≤ h̃.
Case 2: At decision point x̃t, the RH problem Q̃(t+1, h̃) has

a feasible solution. Since there are no upper bound constraints
on τ̃i when solving Q̃r(t + 1, h̃), we must have x̃h̃ = d̃h̃ =
min(dh̃, ãh̃+1), where the last equality comes from (9). We
consider two cases: (i) If dh̃ < ãh̃+1, then since ãh̃+1 ≤ ah̃+1,
we have dh̃ < ah̃+1. From Lemma 1 in [15], it follows that
x∗

h̃
= dh̃. Since x̃h̃ = min(dh̃, ãh̃+1) = dh̃, we obtain x̃h̃ =

x∗
h̃
. (ii) If dh̃ ≥ ãh̃+1, we have x̃h̃ = min(dh̃, ãh̃+1) = ãh̃+1.

When dh̃ ≥ ah̃+1, from Lemma 2 in [15], we have x∗
h̃
≥ ah̃+1

and recall that ah̃+1 ≥ ãh̃+1, so that x∗
h̃
≥ ãh̃+1 = x̃h̃. On

the other hand, when dh̃ < ah̃+1, from Lemma 1 in [15], we
have x∗

h̃
= dh̃ ≥ ãh̃+1 = x̃h̃.

Thus, we have established that x̃h̃ ≤ x∗
h̃
. Now consider

problems G(t+1, h̃; x̃t, x̃h̃) and G(t+1, h̃; x∗
t , x

∗
h̃
). Invoking

Lemma 3, the solution to the first problem is also the one
to Q̃(t + 1, h̃), and the solution to the latter problem is also
the one for tasks {t + 1, . . . , h̃} on the optimal sample path.
Therefore, x̃i and x∗

i are the optimal departure times of task
i ∈ {t+1, . . . , h̃} in G(t+1, h̃; x̃t, x̃h̃) and G(t+1, h̃; x∗

t , x
∗
h̃
)

respectively. We can now apply Lemma 4 with p = t+1, q =
h̃, t

′
1 = x̃t, t

′
2 = x̃h̃, t

′′
1 = x∗

t , t
′′
2 = x∗

h̃
, since t

′
1 < t

′
2, t

′′
1 < t

′′
2

because t < h̃. In addition, ap ≤ t
′
1 ≤ t

′′
1 because x̃t ≤ x∗

t by
assumption and x̃t ≥ at+1 (recall that, by convention, x̃t =
at+1 if t ends a BP). Finally, t

′
2 ≤ t

′′
2 ≤ dq because x̃h̃ ≤ x∗

h̃
as shown above and x∗

h̃
≤ dh̃. Thus, Lemma 4 implies

x̃i ≤ x∗
i , t + 1 ≤ i ≤ h̃. (21)

Next, we use induction over t to complete the proof of the
lemma. At the initial step t = 0, x̃0 = x∗

0. Using the result
obtained in (21), we get x̃i ≤ x∗

i , 1 ≤ i ≤ h̃0 (note that here
we use h̃0 to emphasize that the RH controller is at decision
point x̃0). Now consider the general step at decision point
x̃t, and suppose x̃i ≤ x∗

i , t + 1 ≤ i ≤ h̃t. After the RH
controller applies control to task t + 1 and comes to decision
point x̃t+1, we get x̃t+1 ≤ x∗

t+1. Applying the above auxiliary
result in (21) again, we obtain that at decision point x̃ t+1,
x̃i ≤ x∗

i , t + 2 ≤ i ≤ h̃t+1. This completes the induction
proof and we conclude that at any decision point x̃ t, x̃i ≤ x∗

i

for all t + 1 ≤ i ≤ h̃. �

Proof: [Theorem 1] We prove the theorem using an induc-
tion proof similar to that in Lemma 5. Note that Lemma 5
considers the case when h < N ; for the special case where
h = N , x̃i ≤ x∗

i for all t+1 ≤ i ≤ h̃ can be proven similarly.

At the initial step, x̃0 = x∗
0. Suppose that at decision point

x̃t we have x̃t ≤ x∗
t . Then, invoking Lemma 5, we obtain

x̃i ≤ x∗
i for all t+1 ≤ i ≤ h̃. After the RH controller applies

control to task t + 1, we get x̃t+1 ≤ x∗
t+1 on the RH sample

path, thus completing the proof. �

Proof: [Lemma 6] Since task n ends a BP on the optimal
sample path, from Proposition 2 in [15], dn < an+1. Because
x̃k−1 + H ≥ an+1, the RH controller can detect that task n
ends the BP on the optimal sample path. From Lemma 1 in
[15], x∗

n = dn. Because task k starts the BP, x∗
k−1 < ak.

From Theorem 1, we have x̃k−1 ≤ x∗
k−1 < ak. Since x̃k−1

is a decision point, by our convention we set x̃k−1 = ak.
Invoking Lemma 3, we obtain

P (k, n; x̃k−1, dn) = P (k, n; x∗
k−1, dn) = P (k, n; ak, dn).

Invoking Lemma 2, G(k, n; x̃k−1, dn) has a unique optimal
solution. Therefore, x̃i = x∗

i , τ̃i = τ∗
i , for all i = k, . . . , n. �

Proof: [Lemma 7] Since t = k − 1, the RH problem
becomes Q̃(k, h̃). We consider two cases:

Case 1: (k, n) is the last block of the BP on the optimal
sample path. The proof is identical to that of Lemma 6, the
only difference being that x∗

k−1 = ak, since k starts a block
rather than a BP.

Case 2: (k, n) is not the last block of the BP on the
optimal sample path. Because task n is critical on the optimal
sample path, x∗

n = an+1. Invoking Lemma 2 in [15] for the
optimal sample path, we get dn ≥ an+1. Since, by assumption,
h̃ ≥ n + 1, we have ãn+1 = an+1. We then also have
dn ≥ ãn+1. Invoking Lemma 2 in [15] over the planning
horizon, we obtain x̃n ≥ ãn+1 = an+1 = x∗

n. From Lemma 5,
x̃n ≤ x∗

n. Therefore, x̃n = x∗
n = an+1. Because task k starts

the block, x∗
k−1 ≤ ak. From Theorem 1, we have x̃k−1 ≤

x∗
k−1 ≤ ak. Invoking Lemma 3, we obtain

P (k, n; x̃k−1, x̃n) = P (k, n; x∗
k−1, x

∗
n) = P (k, n; ak, an+1).

Invoking Lemma 2, G(k, n; x̃k−1, x̃n) has a unique optimal
solution. Therefore, x̃i = x∗

i , τ̃i = τ∗
i , for all i = k, . . . , n. �

Proof: [Lemma 8] According to Lemma 5, at any decision
point x̃t, x̃i ≤ x∗

i , for all i = t+1, . . . , h̃. Because x∗
m ≤ dm,

if x̃m = dm, then we must have x∗
m = dm. �

Proof: [Lemma 9] Define xd
i to be the optimal departure

time of task i ∈ {t + 1, . . . , h̃} in G(t + 1, h̃; x̃t, dh̃). Since
G(p, q; t1, t2) is the general form of static control problems,
Lemma 3 and Lemma 2 apply to G(t+1, h̃; x̃t, dh̃). Problem
Q̃(t+1, h̃) is equivalent to G(t+1, h̃; x̃t, x̃h̃). So the solution
to G(t + 1, h̃; x̃t, x̃h̃) is also the one to Q̃(t + 1, h̃), and x̃i

is the optimal departure time of task i ∈ {t + 1, . . . , h̃} in
G(t+1, h̃; x̃t, x̃h̃). We can now apply Lemma 4 to problems
G(t+1, h̃; x̃t, x̃h̃) and G(t+1, h̃; x̃t, dh̃) with p = t+1, q = h̃,
t
′
1 = t

′′
1 = x̃t, t

′
2 = x̃h̃, t

′′
2 = dh̃, since t

′
1 < t

′
2 because t < h̃

and t
′′
1 < t

′′
2 since x̃t ≤ dh̃. In addition, ap ≤ t

′
1 = t

′′
1 because

x̃t ≥ at+1 (by convention, x̃t = at+1 if t ends a BP). Finally,
t
′
2 ≤ t

′′
2 ≤ dq because x̃h̃ ≤ x∗

h̃
(obtained from Lemma 5)



13

and x∗
h̃
≤ dh̃. Also note that since there are no upper bound

constraints on τ̃i when solving G(t + 1, h̃; x̃t, dh̃), we must
have xd

h̃
= dh̃. Thus, Lemma 4 implies

x̃i ≤ xd
i , t + 1 ≤ i ≤ h̃. (22)

Because dc > ac+1, from Lemma 2 in [15],

x̃c ≥ ac+1. (23)

Therefore, since by assumption (ii) of the lemma xd
c = ac+1,

from (22) applied to i = c and (23), we must have x̃ c = ac+1.
�

Proof: [Theorem 2] Necessity: By assumption, di > ãi+1,
i = t + 1, . . . , h̃. Since ãi = ai, for all i = t + 1, . . . , h̃, we
have dc > ac+1 = ãc+1, for some c ∈ {t + 1, . . . , h̃ − 1}.
Invoking Lemma 2 in [15] on the optimal sample path, we
get x∗

c ≥ ac+1. Invoking Lemma 2 in [15] over the planning
horizon, we get x̃c ≥ ãc+1 = ac+1. Suppose task c is critical
on the optimal sample path, i.e., x∗

c = ac+1. From Lemma 5,
x̃c ≤ x∗

c = ac+1. Combining the last two inequalities implies
that x̃c = ac+1.

Sufficiency: Define xd
i to be the corresponding departure

time of task i ∈ {t+1, . . . , h̃} in G(t+1, h̃; x̃t, dh̃). Consider
problems G(t+1, h̃; x∗

t , x
∗
h̃
) and G(t+1, h̃; x̃t, dh̃) and apply

Lemma 4 with p = t + 1, q = h̃, t
′
1 = x∗

t , t
′
2 = x∗

h̃
, t

′′
1 = x̃t,

t
′′
2 = dh̃. Observe that t

′
1 < t

′
2 because t < h̃ and t

′′
1 < t

′′
2

since x̃t ≤ dh̃. In addition, ap ≤ t
′
1 = t

′′
1 since x∗

t = x̃t by
assumption and x̃t ≥ at+1 (by convention, x̃t = at+1 if t ends
a BP). Finally, t

′
2 ≤ t

′′
2 = dq because x∗

h̃
≤ dh̃. Thus, Lemma

4 implies
x∗

i ≤ xd
i , t + 1 ≤ i ≤ h̃. (24)

Now consider problems G(t + 1, h̃; x̃t, x̃h̃) and G(t +
1, h̃; x∗

t , x
∗
h̃
). It follows from Lemma 5 directly that

x̃i ≤ x∗
i , t + 1 ≤ i ≤ h̃. (25)

By assumption xd
c = ac+1, so that from Lemma 9 we get

x̃c = ac+1. Applying (24) and (25) to i = c, it follows that
x∗

c = ac+1. �

Proof: [Theorem 3] Because x̃t = x∗
t and x̃m = x∗

m, from
Lemma 3, G(t + 1, m; x̃t, x̃m) has a unique optimal solution
and it is the same as the corresponding one for tasks {t +
1, . . . , m} on the optimal sample path. �

The following lemma will be used in the proof of Lemma
10.

Lemma 12 Let h̃t > t + 1 be the window boundary the RH
controller uses at decision point x̃t. Then x̃m(t) ≤ x̃m(t+1),
for all m ∈ {t + 2, . . . , h̃t}.

Proof: Let h̃t+1 be the RH window boundary the RH
controller uses at decision point x̃t+1. Clearly, h̃t ≤ h̃t+1.
Recalling that at decision point x̃t, we apply control to task
t + 1, it follows that x̃t+1 = x̃t+1(t). We consider two cases:

Case 1: h̃t = h̃t+1. From Lemma 2 and Lemma 3, we get
x̃m(t + 1) = x̃m(t), for all m ∈ {t + 2, . . . , h̃t}.

Case 2: h̃t < h̃t+1. From Lemma 2 and Lemma 3, x̃m(t)
for any m ∈ {t+2, . . . , h̃t} can be obtained by solving G(t+
2, h̃t; x̃t+1, x̃h̃t

(t)) and x̃m(t + 1) can be obtained by solving
G(t + 2, h̃t; x̃t+1, x̃h̃t

(t + 1)). Recall that

x̃h̃t
(t) = d̃h̃t

= min(dh̃t
, ãh̃t+1), (26)

where ãh̃t+1 is the worst-case estimate of the arrival time of
task h̃t + 1. From Lemma 1 and Lemma 2 in [15], we know
that {

x̃h̃t
(t + 1) = dh̃t

, when dh̃t
< ah̃t+1

x̃h̃t
(t + 1) ≥ ah̃t+1, when dh̃t

≥ ah̃t+1.
(27)

Because h̃t < h̃t+1, ah̃t+1, the arrival time of task h̃t + 1, is
known to the RH controller at decision point x̃t+1 and recall
that ãh̃t+1 ≤ ah̃t+1. Combining (26) and (27), we obtain

x̃h̃t
(t) ≤ x̃h̃t

(t + 1) ≤ dh̃t
. (28)

Now consider problems G(t + 2, h̃t; x̃t+1, x̃h̃t
(t)) and G(t +

2, h̃t; x̃t+1, x̃h̃t
(t + 1)) and apply Lemma 4 with p = t + 2,

q = h̃t, t
′
1 = t

′′
1 = x̃t+1, t

′
2 = x̃h̃t

(t), t
′′
2 = x̃h̃t

(t+1). Observe
that t

′
1 < t

′
2 and t

′′
1 < t

′′
2 because t + 1 < h̃t by assumption.

In addition, ap ≤ t
′
1 = t

′′
1 since x̃t+1 ≥ at+2 (by convention,

x̃t+1 = at+2 if t + 1 ends a BP). Finally, t
′
2 ≤ t

′′
2 ≤ dq

from (28). Thus, Lemma 4 implies x̃m(t) ≤ x̃m(t + 1), for
all m ∈ {t + 2, . . . , h̃t}. �

Proof: [Lemma 10] We only prove the result at decision
point x̃t+1. The remaining cases can be obtained inductively.
From Lemma 12,

x̃m(t) ≤ x̃m(t + 1), for all m ∈ {t + 2, . . . , h̃t}.
and we consider two cases:

Case 1: If x̃m(t) = dm, then invoking Lemma 8, we have
x̃m(t) = x∗

m = dm. Because x̃m(t) ≤ x̃m(t + 1) ≤ dm, we
get x̃m(t + 1) = x̃m(t) = x∗

m = dm.
Case 2: If x̃m(t) = x∗

m = am+1, then invoking Lemma 5,
x̃m(t + 1) ≤ x∗

m = am+1. Since x̃m(t) ≤ x̃m(t + 1), we
obtain x̃m(t + 1) = x̃m(t) = x∗

m = am+1. �

Proof: [Theorem 4] We only need to show that when
i = t + 1, x̃j(t + 1) = x̃j(t) = x̃j , for all j = t +
2, . . . , m. Cases when i = t + 2, . . .m − 1 can be proven
inductively. Because we apply control to task t+1 at decision
point x̃t, x̃t+1 = x̃t+1(t). From Lemma 10, x̃m(t + 1) =
x̃m(t) = x∗

m. Therefore, G(t + 2, m; x̃t+1(t), x̃m(t)) and
G(t + 2, m; x̃t+1, x̃m(t + 1)) are identical. Invoking Lemma
2, for task j ∈ {t + 2, . . . , m}, x̃j(t) and x̃j(t + 1) are
optimal departure times in G(t + 2, m; x̃t+1(t), x̃m(t)) and
G(t+2, m; x̃t+1, x̃m(t+1)) respectively, therefore x̃j(t+1) =
x̃j(t), for all j ∈ {t + 2, . . . , m}. �

The following lemma will be used in the proof of Theorem
5.

Lemma 13 Let {k, . . . , n} be a single BP on the optimal
sample path of G(k, n; t1, t2) and let {δ∗i }, i = k, . . . , n, be
the optimal solution with corresponding departures {y ∗

i }.
(i) If δ∗i > δ∗i+1, then y∗

i = ai+1, (ii) If δ∗i < δ∗i+1, then
y∗

i = di.



14

Proof: The proof of the lemma relies on Proposition 3 in
[15] which states that the solution of the optimization problem
(29) below satisfies the following, for all i = k, . . . , n−1: (i)
If δ∗i > δ∗i+1, then y∗

i = āi+1; (ii) If δ∗i < δ∗i+1, then y∗
i = d̄i.

min
δk,...,δn

∑n
i=k μiθ(δi)

s.t. δi ≥ 0, i = k, . . . , n

yi = āk +
∑i

j=k μjδj , i = k, . . . , n, yn = d̄n

āi+1 ≤ yi ≤ d̄i, i = k, . . . , n − 1.
(29)

Since (k, n) is a BP, we can write G(k, n; t1, t2) as follows:

min
δk,...,δn

∑n
i=k μiθ(δi)

s.t. δi ≥ δmin, i = k, . . . , n

yi = āk +
∑i

j=k μjδj , i = k, . . . , n, yn = d̄n

āi+1 ≤ yi ≤ d̄i, i = k, . . . , n − 1.
āi = max(ai, t1), d̄i = min(di, t2),
i = k, . . . , n

Note that the equations in the last line of G(k, n; t1, t2) simply
specify the values of āi and d̄i, so that removing them does not
change the structure of G(k, n; t1, t2). Since, by assumption,
G(k, n; t1, t2) has feasible solutions, invoking Proposition 4 in
[15], we conclude that problem (29) and G(k, n; t 1, t2) have
the same optimal solutions. Then, it follows that Proposition
3 in [15] also applies to G(k, n; t1, t2) : ∀ i ∈ {k, . . . , n−1},
(i) if δ∗i > δ∗i+1, then y∗

i = āi+1; (ii) if δ∗i < δ∗i+1, then
y∗

i = d̄i.
By the definition of G(k, n; t1, t2), āi = max(ai, t1). We

will show next that if δ∗i > δ∗i+1, then t1 < ai+1, ∀ i ∈
{k, . . . , n−1}. We use a contradiction argument. If δ∗

i > δ∗i+1

and t1 ≥ ai+1, we have y∗
i = āi+1 = t1. This implies that

δ∗j = 0, ∀ j ∈ {k, . . . , i}, which contradicts the assumption
that G(k, n; t1, t2) has feasible solutions. Therefore, for prob-
lem G(k, n; t1, t2), if δ∗i > δ∗i+1, then y∗

i = āi+1 = ai+1, ∀
i ∈ {k, . . . , n− 1}. Using a similar argument, part (ii) of the
lemma can be obtained. �

Proof: [Theorem 5] When m = t + 1, the theorem is
obviously true. We discuss the more interesting case when
m > t + 1. From Theorem 1 we have x̃t ≤ x∗

t , so that there
are two cases to consider: x̃t = x∗

t and x̃t < x∗
t .

Case 1: x̃t = x∗
t . From Lemma 3, x̃i = x∗

i , hence εi =
0, for all i ∈ {t, . . . , m} over the planning horizon. From
Theorem 4, εi = 0 for all i ∈ {t, . . . , m} on the RH sample
path.

Case 2: x̃t < x∗
t . Since m = arg mint+1≤i≤h̃{x̃i : x̃i =

x∗
i }, from Lemma 8, x̃i < di, t + 1 ≤ i < m. From Lemma

1 in [15], di ≥ ãi+1, t + 1 ≤ i < m. Invoking Lemma 2 in
[15] over the planning horizon, x̃ i ≥ ãi+1, t+1 ≤ i < m. By
definition, m ≤ h̃ and we have ãi+1 = ai+1, t + 1 ≤ i < m.
Therefore, di ≥ ai+1, t + 1 ≤ i < m. Invoking Lemma 2 in
[15] on the optimal sample path,

x∗
i ≥ ai+1, t + 1 ≤ i < m. (30)

We conclude that all tasks from t+1 to m must be within one
BP over the planning horizon of the RH controller as well as

on the optimal sample path. Thus,

εi+1 − εi = (x∗
i+1 − x̃i+1) − (x∗

i − x̃i)
= (x∗

i + τ∗
i+1μi+1 − x̃i − τ̃i+1μi+1) − (x∗

i − x̃i)
= (τ∗

i+1 − τ̃i+1)μi+1

This implies that we only need to show τ ∗
i+1 ≤ τ̃i+1 for all i,

t ≤ i ≤ m − 1, i.e. τ∗
i ≤ τ̃i, for all i, t + 1 ≤ i ≤ m. Let us

first consider τ ∗
m and τ̃m. Since

x∗
m = x∗

m−1 + τ∗
mμm = x̃m = x̃m−1 + τ̃mμm,

we have

τ∗
m − τ̃m =

x̃m−1 − x∗
m−1

μm
.

Using Lemma 5, x̃m−1 ≤ x∗
m−1. Therefore, from the above

equation, we have τ ∗
m ≤ τ̃m. Given this inequality, we proceed

to show that if τ ∗
i ≤ τ̃i, then τ∗

i−1 ≤ τ̃i−1, i = t + 2, . . . , m
(we use a recursive proof letting i = m initially, and then
decrease i by 1 at each step until i = t + 2).

As we have shown above, task i − 1 belongs to a BP over
the planning horizon as well as on the optimal sample path.
Therefore, x∗

i−1 ≥ ai and x̃i−1 ≥ ai. We first show that
x∗

i−1 > ai using a contradiction argument. Suppose x∗
i−1 =

ai, from Lemma 5,

x̃i−1 ≤ x∗
i−1 = ai.

Because task i − 1 is within a BP over the planning horizon,
we have

x̃i−1 ≥ ai.

Combining the above two inequalities, we obtain

x̃i−1 = x∗
i−1 = ai,

which contradicts the definition of m. Next, we show that
x̃i−1 < di−1 using a contradiction argument. Suppose x̃ i−1 =
di−1, from Lemma 8, we can get x̃i−1 = di−1 = x∗

i−1, which
contradicts the definition of m.

Since we have shown that x∗
i−1 > ai, we can use a simple

contradiction argument in part (i) of Lemma 13 applied to
G(t + 1, m; x∗

t , x
∗
m): if τ∗

i−1 > τ∗
i , we should have x∗

i−1 = ai

which contradicts x∗
i−1 > ai. Thus, it follows that

τ∗
i−1 ≤ τ∗

i .

Similarly, since x̃i−1 < di−1, a contradiction argument in part
(ii) of Lemma 13 applied to G(t+1, m; x̃t, x̃m), implies that

τ̃i−1 ≥ τ̃i.

Combining the above two inequalities and using our assump-
tion τ∗

i ≤ τ̃i, we finally obtain τ ∗
i−1 ≤ τ̃i−1 and complete the

proof. �
Proof: [Theorem 6] We use induction to prove the result.

Initially, x̃0,1 = x̃0,2. Suppose x̃t,1 ≤ x̃t,2, 0 ≤ t < N .
Then, we need to prove x̃t+1,1 ≤ x̃t+1,2. Let the RH window
boundary at decision point x̃t,1 be h̃t,1. Consider problems
G(t+1, h̃t,1; x̃t,1, x̃h̃t,1,1) and G(t+1, h̃t,1; x̃t,2, x̃h̃t,1,2). From
Lemma 3, the solution to the latter problem is also the one to
tasks {t + 1, . . . , h̃t,1} at decision point x̃t,2. Because x̃t,1 ≤
x̃t,2, H1 < H2, we have x̃h̃t,1,1 ≤ x̃h̃t,1,2. Let t

′
1 = x̃t,1, t

′
2 =



15

x̃h̃t,1,1, t
′′
1 = x̃t,2, t

′′
2 = x̃h̃t,1,2. Because at+1 ≤ x̃t,1 ≤ x̃t,2,

x̃h̃t,1,1 ≤ x̃h̃t,1,2 ≤ dh̃t,1
, x̃t,1 < x̃h̃t,1,1, and x̃t,2 < x̃h̃t,1,2,

from Lemma 4, we obtain x̃t+1,1 ≤ x̃t+1,2. This completes
the induction proof. Then from the definition of ε i, we get
εi,1 ≥ εi,2. �

REFERENCES

[1] D. L. Pepyne and C. G. Cassandras, “Optimal control of hybrid systems
in manufacturing,” Proceedings of the IEEE, vol. 88, no. 7, pp. 1108–
1123, 2000.

[2] J. W. S. Liu, Real - Time Systems. NJ: Prentice Hall Inc., 2000.
[3] L. Miao and C. G. Cassandras, “Optimal transmission scheduling for

energy-efficient wireless networks,” in Proceedings of IEEE INFOCOM,
2006, to appear.

[4] ——, “Optimality of static control policies in some discrete event
systems,” IEEE Transactions on Automatic Control, vol. 50, pp. 1427–
1431, Sep 2005.

[5] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications. Norwell, MA: Kluwer
Academic Publishers, 1997.

[6] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling
on a low-power microprocessor,” in Proceedings of the 7th annual
international conference on Mobile computing and networking, 2001,
pp. 251–259.

[7] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu
energy,” in Proceedings of the 36th Annual Symposium on Foundations
of Computer Science (FOCS’95), 1995, pp. 374–382.

[8] T. Pering, T. Burd, and R. Brodersen, “Dynamic voltage scaling and
the design of a low-power microprocessor system,” in Power Driven
Microarchitecture Workshop, ser. ISCA98, 1998.

[9] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling
of periodic and sporadic tasks,” in Proc. of the IEEE Real-Time Systems
Symposium, 1991, pp. 129–139.

[10] D. Q. Mayne and L. Michalska, “Receding Horizon Control of Nonlinear
Systems,” IEEE Transactions on Automatic Control, vol. AC-35, no. 7,
pp. 814–824, 1990.

[11] C. G. Cassandras and R. Mookherjee, “Receding horizon control for
a class of hybrid systems with event uncertainties,” in Proceedings of
American Control Conference, June 2003, pp. 413–418.

[12] G. Qu, “What is the limit of energy saving by dynamic voltage scaling?”
in IEEE/ACM International Conference on Computer Aided Design,
Nov. 2001, p. 560.

[13] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal, “Energy-efficient
packet transmission over a wireless link,” IEEE/ACM Transactions on
Networking, vol. 10, pp. 487–499, Aug. 2002.

[14] Y. C. Cho, C. G. Cassandras, and D. L. Pepyne, “Forward decomposition
algorithms for optimal control of a class of hybrid systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 11(5), pp. 497–513,
2001.

[15] J. Mao, Q. Zhao, and C. G. Cassandras, “Optimal dynamic voltage scal-
ing in power-limited systems with real-time constraints,” in Proceedings
of the 43rd IEEE Conference on Decision and Control, Dec. 2004, pp.
1472–1477.

[16] L. Miao and C. G. Cassandras, “Receding horizon control for a class of
discrete event systems with real-time constraints,” in Proceedings of the
44th IEEE Conference on Decision and Control and European Control
Conference, Seville, Spain, 2005.

PLACE
PHOTO
HERE

Lei Miao received the B.S. and M.S. degrees
from Northeastern University, Shenyang, Liaoning,
China, and the Ph.D. degree from Boston University,
Boston, MA, in 1998, 2001, and 2006, respectively.
He is currently with the Carrier Ethernet group in
Nortel Networks, Billerica, MA.

His research interest include control and opti-
mization of Discrete Event Systems, stochastic op-
timization, and real-time systems, with applications
to communication networks, sensor networks, and
metro Ethernet networks.

PLACE
PHOTO
HERE

Christos G. Cassandras received the B.S. degree
from Yale University, New Haven, CT, the M.S.E.E
degree from Stanford University, Stanford, CA, and
the S.M. and Ph.D. degrees from Harvard University,
Cambridge, MA, in 1977, 1978, 1979, and 1982,
respectively. From 1982 to 1984 he was with ITP
Boston, Inc. where he worked on the design of
automated manufacturing systems. From 1984 to
1996 he was a Faculty Member at the Department
of Electrical and Computer Engineering, University
of Massachusetts, Amherst.

Currently, he is Professor of Manufacturing Engineering and Professor
of Electrical and Computer Engineering at Boston University, Boston, MA
and a founding member of the Center for Information and Systems En-
gineering (CISE). He specializes in the areas of discrete event and hybrid
systems, stochastic optimization, and computer simulation, with applications
to computer networks, sensor networks, manufacturing systems, transportation
systems, and command-control systems. He has published over 200 papers in
these areas, and two textbooks one of which was awarded the 1999 Harold
Chestnut Prize by the IFAC. Dr. Cassandras is currently Editor-in-Chief of the
IEEE Transactions on Automatic Control and has served on several editorial
boards and as Guest Editor for various journals. He is a member of the IEEE
Control Systems Society Board of Governors and a recipient of several awards,
most recently the IEEE Control System Society’s 2006 Distinguished Member
Award. He is a member of Phi Beta Kappa and Tau Beta Pi and a Fellow of
the IEEE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /Batang
    /BatangChe
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Dotum
    /DotumChe
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FZSTK--GBK1-0
    /FZSY--SURROGATE-0
    /FZYTK--GBK1-0
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LiSu
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MingLiU
    /MonotypeCorsiva
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MS-UIGothic
    /MVBoli
    /NSimSun
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PMingLiU
    /Raavi
    /ScriptMTBold
    /SegoeMediaCenter-Regular
    /SegoeMediaCenter-Semibold
    /Shruti
    /SimHei
    /SimSun
    /STCaiyun
    /STFangsong
    /STXihei
    /STXingkai
    /STXinwei
    /STZhongsong
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TahomaSmallCap-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /YouYuan
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


