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Abstract—This paper utilizes the principle of reciprocity in
electromagnetic wave propagation as well as the variations of
the wireless channel state to share secrets in wireless networks.
In particular, a novel secret sharing mechanism is proposed to
share secret bits between two wireless users. Using the Central
Limit Theorem, we show that the proposed approach can provide
performance guarantee when only limited stochastic information
is available. A few properties of the proposed approach are
identified to optimize the secret sharing process. Simulation
results indicate that compared with [3], the proposed mechanism
can share secret bits 3-4 times faster with higher probability of
success.
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I. INTRODUCTION

There is an intriguing information security problem in
wireless communications: suppose that Alice and Bob are two
legitimate wireless users, and Eve is an eavesdropper; how
can we guarantee that the confidential information exchanged
between Alice and Bob is protected against Eve who can also
receive all the transmitted packets? The most common way
of achieving security is cryptography. Most wireless networks
have adopted symmetric-key cryptography. Symmetric-key
cryptography encrypts and decrypts messages using a single
shared private key which must be securely exchanged initially.
Therefore, secret sharing is crucial to the information security
of wireless communications, especially in Machine to Machine
(M2M) networks where human intervention is either minimal
or does not exist at all.
This paper proposes a novel secret sharing policy between

Alice and Bob, utilizing the differential information of their
common observations on the wireless channel state. The
organization of the paper is as follows: in Section II, we
discuss the related work of secret sharing and formulate the
problem; in Section III, we introduce our main result; finally,
we conclude in Section IV.

II. RELATED WORK AND PROBLEM FORMULATION

Electromagnetic wave propagation has a property known
as the principle of reciprocity [1]: if two antennas radiate
identical signals at about the same time, the excitation of each
antenna by the signal originated from the other antenna will
generate almost identical outputs. Utilizing this property, some
work focused on extracting information from Alice and Bob’s
common observations on the wireless channel state [2] [3]
[4]. In particular, Alice and Bob send probes to each other
at a regular rate. The channel state is then obtained from

these probes, and secrets are shared based on the similarity
of the channel state information. Whether a secret bit can be
successfully shared is probabilistic. We use probability of error
to denote the probability that a secret bit is shared unsuccess-
fully. In [3], a secret bit is shared between Alice and Bob
only after a number of consecutive channel estimates are all
above or below pre-established thresholds. This approach has
two obvious drawbacks: i) consecutive probes that are above
or below the reference levels may not always exist and ii)
unused probes are essentially wasted. In addition, the approach
in [3] does not specify how a specific error probability can be
guaranteed. Furthermore, the error probability in [3] can only
be derived when the wireless channel characteristics are fully
known.
Conventional physical layer security solutions often bypass

secret keys by designing smart transmit coding strategies.
What is different in this paper is that we exploit physical layer
properties, i.e., wireless channel state, to extract secret keys
over a public channel.
We assume that the channel state information between Alice

and Bob is estimated by short probes: waveforms known to
both Alice and Bob. Specifically, Alice initiates the probes at
a constant rate, and Bob sends a probe to Alice  seconds
after receiving each probe from her. During the transmission,
the probes are distorted by the wireless channel and are also
affected by noises. Upon the reception of each probe, Alice
and Bob can then estimate the instantaneous channel state. It
is widely accepted that the time-variant channel response of
the wireless channel can be modeled as a complex Gaussian
random process. In this paper, we consider the magnitude
response at a fixed frequency 0 as the channel state function
() Let () and () be the channel estimates of the i-th
probe received by Alice and Bob respectively. Because of the
principle of reciprocity, () and () are highly correlated
when  is sufficiently small. This is the basis of how we can
extract common information from the channel estimates.
In this paper, we will focus on the procedure of sharing one

bit of secret between Alice and Bob. Specifically, Alice will
accumulate a sequence of channel estimates and send some
probe information to Bob. Bob will then extract the secret
bit from the probe information. Alice will restart the same
process to share the next secret bit. Our questions are: what
probe information shall Alice send to Bob and how does Bob
decode the secret bit from the probe information? Essentially,
we need to come up with a good secret sharing policy that fully
utilizes the probe information and also incurs low probability
of error.
We use  to denote the difference between () and (),
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i.e.,
 = ()− ()

We have the following assumption:
Assumption 1: ,  = 1 2 3    are i.i.d. random vari-

ables, and each random variable has mean  and variance 2
Note that the above assumption does not rely on the prob-

ability distribution function of random variable ; instead,
only the mean and variance of  are assumed to be known.
They can be obtained via statistical methods.

III. DIFFERENTIAL SECRET SHARING

In this section, we propose a novel Differential Secret
Sharing (DSS) mechanism that addresses the issues in [3].
We denote:
2 : the number of channel estimates exchanged between

Alice and Bob before sharing each secret bit.
2 : the number of channel estimates actually used by Alice

and Bob to share each secret bit.
We first present the basic idea of the secret sharing mech-

anism:
Step 1: Alice decides the secret bit (0 or 1) from the 2N (N is

a control variable) number of channel estimates and then picks
 (n is another control variable) largest channel estimates and
 smallest channel estimates from the 2 estimates, 1 ≤  ≤


Step 2: Alice sends a sequence S of the 2 indices to Bob
such that

((1)) ≤ ((2)) ≤ · · · ≤ ((2)) (1)

if 1 is picked in Step 1;

((1)) ≥ ((2)) ≥ · · · ≥ ((2))

if 0 is picked in Step 1.

where () is the ith index in ,  = 1     2.
Step 3: Bob decodes the secret bit using (2) below.

( ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if

X
=1

(()) 

2X
=+1

(())

0 if
X
=1

(()) 

2X
=+1

(())

(2)

Note that in Step 1, Alice may use very simple rules to
determine the random secret bit. For example: choose bit 1 if
(1)  (2) and bit 0 otherwise.
Notice that ( ) may not always be the same secret

bit generated by Alice. When this happens, Bob encounters
a decoding error. As we will show next, the error probability
depends on  and some other factors. We use () to denote
the error probability of decoding at Bob when 2 probes are
used to share the secret bit. When the pdf of  is known, we
may derive the exact form of () using which we can then
find the best  that minimizes the error probability. In general,
not all 2 channel estimates are always needed to share the
secret bit. In this paper, we are more interested in providing a
guaranteed maximum error probability when the pdf of  is
unknown. This is the focus of the rest of the section. Before

we derive the error probability, we first introduce another
assumption and show that Eve cannot precisely figure out the
information bit from the above procedure.

Assumption 2: Eve is more than 2 ( is the wavelength
of the wireless signal) away from Alice and Bob.

It has been shown in [5] that under Assumption 2, the probe
signals received by Eve are uncorrelated with () Although
Eve can overhear the probe signals sent by Alice and Bob,
the signals received by her are completely different. Therefore,
Eve cannot decode the information bit using sequence , even
if the DSS mechanism is known to her.

We now derive the error probability of the DSS mechanism.

Lemma 3.1: For sufficiently large integers  and  1 ¿
 ≤ 

() ≈ 1
2
[1− erf( √

4
)] (3)

where

 = |
X
=1

(())−
2X

=+1

(())| (4)

Proof: The probability of error is

() = { = 1| = 0}{ = 0}
+{ = 0| = 1}{ = 1}

where { = 0}, { = 1} { = 0} and { = 1} are
the events "Alice generates 0", "Alice generates 1", "Bob
calculates 0", and "Bob calculates 1", respectively. Assuming
that Alice generates "1" or "0" with equal probability, and due
to the symmetric property of the policy,

() = { = 1| = 0} = { = 0| = 1}
Without loss of generality, let us calculate { = 1| = 0}
First,

X
=1

(())−
2X

=+1

(()) (5)

=

X
=1

[(())−]−
2X

=+1

[(())−]

=

X
=1

(())−
2X

=+1

(()) +

where  = −
X
=1

 +

2X
=+1

 . Because  is sufficiently

large, we invoke the Central Limit Theorem and get

X
=1


→ ( 2) and

2X
=+1


→ ( 2)

Therefore,


→ (0 22) (6)

Since Alice generates "0", from (1), we have

X
=1

(())−
2X

=+1

(()) ≥ 0 (7)
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Because Bob decodes the message, and gets "1", we have

X
=1

(())−
2X

=+1

(())  0 (8)

Combining (5), (7), and (8), we have

() ≈ {  −|
X
=1

(())−
2X

=+1

(())|}

=
1

2
[1− erf( √

4
)] ¥

Lemma 3.1 shows that when  is sufficiently large, the
error probability can be calculated by Alice, using her channel
estimates, , and the variance of random variable . This
property is attractive because it does not require the exact
distribution of  and ().
In order to take advantage of this nice property, we modify

the secret sharing mechanism so that it can now guarantee that
the error probability is below a given threshold :

Step 1: Alice and Bob keep sending each other channel
probes until Alice has 2N (N is a control variable) channel
estimates and there exists integer n∗ that satisfies:

∗ = argmax
∈{}

(
√

) and (9)

∗√
∗
≥ 2 erf−1(1− 2)) (10)

where  is a sufficiently large positive integer

Steps 2 and 3: the same as Steps 2 and 3 above, except that
we now use ∗
Note that  is a sufficiently large known positive integer.

We would like  to be always greater than  so that (3) applies
to all  ∈ {     } including ∗. It implies that in order
to achieve guaranteed error probability, at least 2 channel
estimates are used to share the secret bit and  ≥ . Notice
that the above secret sharing mechanism does not specify how
many initial channel probes (2 ) have to exchanged; it is up
to the specific implementation to determine it. For example,
Alice may initially exchange 2 = 2( +) ( is a constant
positive integer) channel probes with Bob and then check if
there exists ∗ that satisfies both (9) and (10). If yes, Alice will
proceed to Steps 2 and 3 above; otherwise, she will accumulate
more channel probes and try to find ∗ again.
Next, we will show three properties of the above secret

sharing mechanism:
i) the lowest error probability can be obtained when (9) and

(10) are satisfied and it is less than 
ii) in order to find ∗ we do not have to check all  ∈

{     }
iii) any arbitrarily low  can be satisfied by increasing 2 ,

the amount of channel probes Alice and Bob exchange.
We now work on Property ) ∗ is the value in {     }

that minimizes (3). One way of finding ∗ is to compare ()
for all  ∈ {    } Nonetheless, the lemma below shows
that ∗ can be easily found without the need of dealing with
the error function at all.

Lemma 3.2: ∗ = argmax
∈{}

(√

)

Proof: Because
∗√
∗
≥ √


  =     

we have
∗√
4∗

≥ √
4

  =     

Since erf(x) is a strictly increasing function, we obtain

erf(
∗√
4∗

) ≥ erf( √
4

)  =      

Invoking (3),

(
∗) =

1

2
[1− erf( ∗√

4∗
)]

≤ 1
2
[1− erf( √

4
)] = ()  =       ¥

Lemma 3.2 uses the monotonicity property of the erf function
to show that the optimal number of probes that minimizes the
error probability can be easily found by comparing the values
of √


, for each  ∈ {     }. The smallest  that provides

the largest √

is the optimal number. This result is important

because it asserts that determining the set of channel estimates
for minimum error probability requires neither complicated
calculations nor any stochastic information. It also confirms
that using all 2 number of channel estimates may not
minimize the error probability. Using ∗ in (3) and letting
(

∗) ≤  we obtain (10). This completes the discussion
of Property i).

We now discuss Property ii). As we can see from the
above, finding ∗ may still require lots of comparisons. The
lemma below shows that in some scenarios, the number of
comparisons could be less.

Lemma 3.3: ∗ ≤   ∈ {      − 1}, if
+1



≤ 1 + 1√
 + 

Proof: Invoking Lemma 3.2, we need to show that

√

≥ √


 for  =  + 1     

Because
+1



≤ 1 + 1√
 + 



we have
+1 − ≤ 

1√
 + 

 (11)

By definition of  in (4) we obtain

+2 −+1 ≤ +1 −∀ ∈ {      − 2} (12)

Combining (11) and (12), we have

 − ≤ (− )(+1 −)

= 

− √
 + 

  =  + 1     
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i.e.,





≤ 1 + − √
 + 

≤ 1 + − √
 + 

=

√
√

¥

Lemma 3.3 shows that when the difference between 

and +1 is small enough, we do not have to take  =

 + 1      into consideration. In this case, we only need
to consider {     } for ∗
We now discuss Property iii). The next result shows that

arbitrarily low  can be satisfied when Alice and Bob
exchange a large number of probes.

Lemma 3.4: When  →∞ (
∗)→ 0

Proof: Assume there are two thresholds + and − that lie
within the possible range of channel states, and +  − .
Let

 = + − − 

When 2 , the number of probes Alice and Bob accumulate
goes to infinity, 2

0
 the number of probes that are above

+ and below − also goes to infinity. Then, we have

lim
→∞

(
∗) = lim

→∞
1

2
[1− erf( ∗√

4∗
)]

≤ lim
→∞

(
0
) = lim


0→∞

1

2
[1− erf( 

0
√

4
0

)]

=
1

2
[1− erf(∞)] = 0 ¥

In practice, we are interested in knowing how quickly a
secret bit can be successfully shared between Alice and Bob.
In our proposed secret sharing mechanism, we let  ≥ 

in order to use the Central Limit Theorem to derive the
error probability without relying on the exact distribution of
 Nonetheless, it is important to note that when the exact
distribution of  is known, the requirement of  ≥  may
be relaxed. For example, when  is zero-mean Gaussian with
variance 2, (6) and (3) are true even for small .
In Fig. 1, we show the typical number of probes needed for

various error probability requirements in correlated Rayleigh
fading channels, under the assumption that  is Gaussian.
Rayleigh fading process is simulated using the autoregressive
method studied in [6]. In particular, the autoregressive model
order is set to 100, the maximum doppler frequency is set
to 400Hz, the symbol rate is set to 3k baud, and a bias of
10−8 is used to condition the Yule–Walker equations. The
number of probes needed for each error probability in Fig.
1 is the average value of 1000 secret bit sharing procedures.
Notice that the maximum number of probes required in Fig.
1 is only 47. Since the probing rate typically is at least a few
kilo Hz [3], our simulation results essentially show that the
differential secret sharing approach proposed in this paper can
significantly reduce the error probability while keeping a fast
secret generation rate.
In Table 1, we show the simulations results of DSS, com-

pared with the approach in [3]. Specifically, we run simulation
to share 1 million bits in the above Rayleigh fading channel.
When implementing the approach in [3], we let system para-
meters ± = mean of channel state ± 08 and we chose 
to be 5 and 7. When implementing DSS, the error probability
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Fig. 1. Number of probes needed for various error probabilities

was set to below 10−7 The results show that DSS is able to
achieve zero percent of error while the approach in [3] cannot.
Compared with the  = 7 case, DSS also requires much less
number of average probes per bit, indicating that DSS can
share secrets at a rate 3-4 times faster.

 = 5  = 7 DSS

% of error,  = 03 0053 00022 0

% of error,  = 04 0171 00134 0

avg. probes / bit,  = 03 2587 7173 1830

avg. probes / bit,  = 04 3403 10749 2958

Table 1: Performance comparison between [3] and DSS (1 million bits)

IV. CONCLUSIONS

In this paper, we propose a novel secret sharing mechanism
that utilizes two wireless users’ common observations on
the wireless channel state. The differential information of
the channel estimates fully utilizes the channel probes and
provides us a way to accurately calculate the error probability.
Simulation results show that compared with the approach in
[3], DSS shares secrets faster and more reliably. The nice
properties of DSS make it suitable for M2M applications,
especially in the scenarios that extremely low error probability
is required in order to share secrets among multiple devices.
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