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Abstract

We study the asymptotical properties of indefinite kernel network with coeffi-

cient regularization and dependent sampling. The framework under investigation

is different from classical kernel learning. Positive definiteness is not required by

the kernel function and the samples are allowed to be weakly dependent with

the dependence measured by a strong mixing condition. By a new kernel decom-

position technique introduced in [25], two reproducing kernel Hilbert spaces and

their associated kernel integral operators are used to characterize the properties

and learnability of the hypothesis function class. Capacity independent error

bounds and learning rates are deduced.

Keywords: Kernel network; indefinite kernel; regression learning; regularization; α-

mixing condition; consistency.
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1 Introduction

The aim of this paper is to establish the mathematical foundation of indefinite kernel

network for regression learning with dependent sampling. For this purpose we study

its asymptotical properties, prove the consistency, and estimate the learning rates.

In the context of statistical learning theory [22], the framework of regression learning

is usually described as follows: Let X be a domain of Rn and Y = R, ρ be a non-

degenerate Borel probability distribution on Z = X × Y . The regression function

fρ : X → Y is given by

fρ(x) = E(y|x) =

∫
Y

ydρ(y|x)

where ρ(y|x) is the conditional distribution of y for given x. The target of regres-

sion learning is to find an good approximation of fρ from a set of observations z ={
(xi, yi)

}m
i=1
∈ Zm drawn from the unknown probability measure ρ.

In kernel network for regression learning, a kernel function K : X ×X → R plays

the role of basis function and the regression function is learned from superpositions of

the kernel functions. To be precise, let

HK,x =

{
fc(x) =

m∑
i=1

ciK(x, xi) : c = (c1, . . . , cm) ∈ Rm,m ∈ N

}
.

Then the approximation is searched within HK,x by minimizing the least square error.

Using a penalty term to stabilize this ill posed problem, we get the regularized kernel

network

fz = fcz where cz = arg min
c∈Rm

1

m

m∑
i=1

(yi − fc(xi))2 + λm
m∑
i=1

c2i . (1.1)

Unlike the traditional kernel methods where the kernel function is always positive

definite, in this paper we relax the requirement of the kernel function. We assume it is a

quite general bivariate function satisfying only the continuity and uniform boundedness

on X which we call indefinite kernel. Note that if the kernel is positive definite, the

kernel matrix Kx = (K(xi, xj)
m
i,j=1 is positive definite. Then cKxc

> is a good choice of

the regularizer and the algorithm reduces to the traditional kernel regression which has

been extensively studied in the literature; see [4,8–10,18,19,29] and references therein.
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When K is an indefinite kernel, since the kernel matrix is not necessarily positive

definite, the above quadratic form cannot play the role of the stabilizer. Instead `2

norm of the coefficient vector c is a good choice in this setting. Indefinite kernels

find their applications in many areas in recent years, see [11, 14, 17]. Several machine

learning algorithms associated to indefinite kernels or matrices were developed. For

instance, learning with Reproducing Kernel Krein Spaces was proposed in [7] and

support vector machines with indefinite kernels was introduce in [12,28]. These works

motivated the study of the mathematical foundations for the learning with indefinite

kernels [21,24–26].

Although some studies have been done for learning with indefinite kernels, there

are questions left unanswered. For (1.1) we first proved a capacity independent result

in [21] where the indefinite kernel is only assumed continuous and uniformly bounded.

The consistency under so weak conditions is encouragingly supportive for indefinite

kernel learning. However, the method used there is tricky and complicated. It has

two shortcomings: firstly it leads to slow convergence rates and do not support the

competition of indefinite kernels versus positive kernels. Secondly, no evidence shows

that it can be easily adapted to study the dependent sampling which is very common in

practice. More recently the second author proposed a new technique in [25] that used

two reproducing kernel Hilbert spaces and their associated kernel integral operators to

characterize the properties of hypothesis function class HK,x and was able to improve

the learning rate. This technique also shed light to the study of this algorithm with

dependent sampling.

To study asymptotical properties of indefinite kernel network with dependent sam-

pling and establish its mathematical foundation will be the main contribution of this

paper. For the kernel function, except for the continuity and uniform boundedness we

will further assume a regular condition which will be stated in Section 2. For dependent

sampling we consider strongly mixing sequence which has been shown very common in

sampling process (see [1, 2, 6, 13] and the references therein) and adopted in statistical

learning theory, see [15, 20, 27, 30]. We assume the dependence between samples is
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measured by α-mixing condition: for two σ-fields J and D, define the α-coefficient as

α(J ,D) = sup
A∈J ,B∈D

|P (A ∩B)− P (A)P (B)|.

For a sequence of samples {zi}∞i=1, denote by Mb
a the σ-field generated by random

variables za, za+1, · · · , zb. The random sequence zi, i ≥ 1, is said to satisfy a α-mixing

condition if

αi = sup
k≥1

α(Mk
1,M∞

k+i) −→ 0, as i→∞.

Except for indefinite kernel and dependent sampling assumption in this framework, we

will also relax a widely used boundedness restriction on the output variables y. Instead

we use a weaker condition: for some constants c, M ≥ 1,∫
Z

|y|ldρ ≤ c l!M l, ∀l ∈ N. (1.2)

Note the boundedness assumption excludes the usual Gaussian noise while assumption

(1.2) covers it. This assumption is well known in probability theory and was introduced

in learning theory in [5, 23].

This paper will be arranged as follows. In Section 2 we discuss the technique

proposed in [25]. In Section 3 we use it to study the convergence of empirical indefinite

kernel integral operator with dependent sampling. In Section 4 we prove a capacity

independent error bound for the indefinite kernel network algorithm. The consistency

and convergence rates are stated in Section 5 as corollaries.

2 Structures of indefinite kernels

In this section we study the properties of indefinite kernels and the associated integral

operators.

For a continuous kernel function K(x, y) we denote the associated integral operator

by LK , defined as

LKf(x) =

∫
X

K(x, t)f(t) dρX(t).

If K is bounded, then LK is a compact linear operator on L2
ρ
X

.

4



Define two kernels

K̃(x, t) =

∫
X

K(x, u)K(t, u)dρX(u),

K̂(x, t) =

∫
X

K(v, x)K(v, t)dρX(v).

It is obvious that both K̃ and K̂ are Mercer kernels, i.e., symmetric and positive

definite kernels. Hence their associated integral operators are symmetric and positive.

Let ϕl, l ∈ N be the orthonormal eigenfunction sequence of integral operator LK̃ ,

associated with its positive eigenvalue σ2
l , l ∈ N. Suppose these eigenvalues are in a

non-increasing order. Mercer Theorem states that

K̃(x, t) =
∞∑
i=1

σ2
l ϕ(x)ϕl(t),

where the series converges absolutely and uniformly on X ×X. This gives that

LK̃ =
∞∑
l=1

σ2
l ϕl ⊗ ϕl.

It is obvious to notice that

LK̂ = L∗KLK , and LK̃ = LKL
∗
K .

Moreover, by the polar decomposition of LK (see [16]), there is a partial isometry

operator U from L2
ρ
X

to L2
ρ
X

, such that

LK = (LKL
∗
K)1/2U∗ = L

1/2

K̃
U∗.

Denote ψl = Uϕl, l ∈ N, which also forms an orthonormal system of L2
ρX

(X). We have

LK =
∞∑
l=1

σlϕl ⊗ ψl

and

LK̂ = L∗KLK = UL
1/2

K̃
L
1/2

K̃
U∗ =

∞∑
l=1

σ2
l ψl ⊗ ψl.

The latter tells that σ2
l and ψl are the eigenvalues and eigenfunctions of LK̂ . By Mercer

Theorem we have

K̂(x, t) =
∞∑
l=1

σ2
l ψl(x)ψl(t),
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where the series converges absolutely and uniformly on X ×X.

Next we introduce a kernel condition which was used in [25] and enables the analytic

expression of K.

Kernel Condition. κ20 = sup
x∈X

∞∑
l=1

σlϕ
2
l (x) <∞, κ21 = sup

t∈X

∞∑
l=1

σlψ
2
l (t) <∞.

Denote κ = max{κ0, κ1}. Kernel Condition ensures that
∞∑
i=1

σiϕi(x)ψi(t) converges

toK(x, t) absolutely and uniformly onX×X. It encourages us to consider the following

two Mercer kernels,

K0(x, t) =
∞∑
l=1

σlϕl(x)ϕl(t),

K1(x, t) =
∞∑
l=1

σlψl(x)ψl(t).

The corresponding kernel integral operators are

LK0 =
∞∑
l=1

σlϕl ⊗ ϕl = L
1
2

K̃
,

LK1 =
∞∑
l=1

σlψl ⊗ ψl = L
1
2

K̂
.

The associated RKHS HK0 and HK1 will be simply denoted as H0 and H1 in the

following. They can be characterized by

H0 =

{
f =

∞∑
l=1

flφl :
∞∑
i=1

f 2
l

σl
<∞

}
,

H1 =

{
f =

∞∑
l=1

glψl :
∞∑
i=1

g2l
σl
<∞

}
.

Lemma 2.1 below summarizes the properties that will be used in later sections.

Lemma 2.1. Under the Kernel Condition, we have

(i) LK = LK0U
∗ = U∗LK1;

(ii) K(·, x) ∈H0 and K(x, ·) ∈H1 for any x ∈ X;

(iii) U is an isometry operator from H0 to H1 and UK(·, x) = K1(·, x);

U∗ is an isometry operator from H1 to H0 and U∗K(x, ·) = K0(·, x);
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( iv) LK is bounded from L2
ρ
X

to H0 and from H1 to H0 with both operator norms

bounded by κ2.

3 Empirical approximation of integral operators by

dependent sampling

In this section we study the empirical approximation of the integral operators by mixing

sequences. The following lemma from [3] will be used to measure the effects of the

dependance between samples. For a random variable ξ with values in a Hilbert space

H and 1 ≤ u ≤ +∞, denote the u-th moment as ‖ξ‖u = (E‖ξ‖uH)1/u if 1 ≤ u <∞ and

‖ξ‖∞ = sup ‖ξ‖H.

Lemma 3.1. Let ξ and η be random variables with values in a separable Hilbert space

H measurable σ−field J and D and having finite u-th and v-th moments respectively.

If 1 < u, v, t < +∞ with u−1 + v−1 + t−1 = 1 or u = v =∞, t = 1, then

|E(ξ, η)− (Eξ,Eη)| ≤ 15α
1
t (J ,D)‖ξ‖u‖η‖v.

For the sampling points x = {x1, . . . , xm}, the sampling operator S : H0(H1)→ Rm

maps function f to a vector Sf = (f(x1), . . . , f(xm))>. Operators T and T∗ are defined

as, for any c = (c1, . . . , cm) ∈ Rm,

Tc =
1

m

m∑
i=1

ciK(·, xi),

T∗c =
1

m

m∑
i=1

ciK(xi, ·).

By Lemma 2.1 (ii), T and T∗ are operators from Rm to H0 and H1 respectively. It

is proved in [25] that

‖S‖ ≤ κ
√
m, and ‖T‖ ≤ κ√

m
, ‖T∗‖ ≤

κ√
m
.

In the sequel we simply denote by ‖ · ‖01 and ‖ · ‖10 the norms of operators from

H0 to H1 and from H1 to H0 respectively.
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Proposition 3.2. Suppose the set of random sequence zi = (xi, yi), 1 ≤ i ≤ m satisfies

the α-mixing condition. Then

E‖T∗S − L∗K‖201 ≤
κ4

m

(
1 + 30

m−1∑
l=1

αl

)
,

E‖TS − LK‖210 ≤
κ4

m

(
1 + 30

m−1∑
l=1

αl

)
.

Proof. The proof of these two inequalities are similar, we only prove the first one. For

any f ∈H0, the reproducing property of H0, f(xi) = 〈K0(·, xi), f〉0, allows us to write

T∗Sf =
1

m

m∑
i=1

f(xi)K(xi, ·) =

[
1

m

m∑
i=1

K(xi, ·)⊗K0(·, xi)

]
f,

implying that

T∗S =
1

m

m∑
i=1

K(xi, ·)⊗K0(·, xi).

By Lemma 2.1 (iii),

E‖T∗S − L∗K‖201 = E‖U∗T∗S − U∗L∗K‖200

= E

∥∥∥∥∥ 1

m

m∑
i=1

K0(·, xi)⊗K0(·, xi)− LK0

∥∥∥∥∥
2

00

≤ κ4

m

(
1 + 30

m−1∑
l=1

αl

)
.

The last inequality follows from [20, Lemma 5.1].

The invertibility of λI + TST∗S is proved for any λ > 0 in [25].

Proposition 3.3. Suppose the set of random sequence zi = (xi, yi), 1 ≤ i ≤ m satisfies

a strongly mixing condition. For any 0 < η < 1, with confidence 1− η/2, the following

inequalities hold:

‖T∗S − L∗K‖01 ≤
2κ2
√
mη

√√√√1 + 30
m−1∑
l=1

αl (3.1)

‖TS − LK‖10 ≤
2κ2
√
mη

√√√√1 + 30
m−1∑
l=1

αl; (3.2)
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‖TST∗S − LK̃‖00 ≤
4κ4
√
mη

√√√√1 + 30
m−1∑
l=1

αl; (3.3)

‖T∗STS − LK̂‖11 ≤
4κ4
√
mη

√√√√1 + 30
m−1∑
l=1

αl. (3.4)

Moreover when λ,m satisfy that

8κ4

√√√√1 + 30
m−1∑
l=1

αl ≤ λ
√
mη, (3.5)

there hold

∥∥(λI + TST∗S)−1
∥∥ ≤ 2

λ
and

∥∥(λI + T∗STS)−1
∥∥ ≤ 2

λ
. (3.6)

Proof. By Proposition 3.2 and Markov inequality, inequalities (3.1) and (3.2) hold with

confidence 1 − η/4 respectively. Thus with confidence 1 − η/2, these two inequalities

hold simultaneously. The inequality (3.3) holds by

‖TST∗S−LK̃‖ ≤ ‖(TS−LK)T∗S‖+‖LK(T∗S−L∗K)‖ ≤ κ2‖TS−LK‖+κ2‖T∗S−L∗K‖.

Similarly we can prove (3.4).

Now we turn to proof of (3.6). Using the invertibility of λI + TST∗S, we write

(λI + TST∗S)−1 = (λI + LK̃ + TST∗S − LK̃)−1

= (λI + LK̃)−1
{
I + (TST∗S − LK̃)(λI + LK̂)−1

}−1
.

Inequality (3.3) and condition (3.5) show that, with confidence 1− η/2,

‖(TST∗S − LK̃)(λI + LK̂)−1‖ ≤ 1

2
.

This ensures the first conclusion in (3.6).

By symmetry, it is straightforward to conclude the invertibility of λI + T∗STS on

H1 and the second inequality in (3.6).
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4 Error analysis

In this section we will prove an error bound for ‖fz − fρ‖L2
ρ
X

which can be used to

measure the goodness of the approximation of fρ by fz. It is proved in [21,25] that

fz = T
(
λI + ST∗ST

)−1
ST∗y =

(
λI + TST∗S

)−1
TST∗y.

Note that ET∗y = L∗Kfρ, TS → LK and TST∗S → LK̃ in probability, we introduce the

regularizing function

fλ = (λI + LK̃)−1LK̃fρ

as a bridge and decompose the error into sample error and approximation error as

follows:

‖fz − fρ‖L2
ρ
X
≤ ‖fz − fλ‖L2

ρ
X

+ ‖fλ − fρ‖L2
ρ
X
. (4.1)

In the next two subsections we will analyze the two types of errors.

4.1 Estimate of approximation error

By no free lunch principle, we have to make some assumptions on the target function.

This is the usual way for analysis of learning algorithms. These conditions are usually

called prior condition. In this paper we adopt a commonly used prior condition.

Prior Condition. L−βK0
fρ ∈ L2

ρX
(X) for some β > 0.

This prior condition means that fρ belongs to the range of the operator LβK0
on

L2
ρ
X
. Note that if β = 1

2
this range is exactly H0 and if β < 1

2
this range characterizes

an interpolation space between H0 and L2
ρ
X

while if β > 1
2

it characterizes a subspace

of H0. By Lemma 2.1 (ii) the empirical approximation fz is in H0. It is appropriate

to use this space to characterizes the ability of the approximation of fρ by fz. The

following results are proved in [25, Theorem 5.1 and Lemma 5.3].

Theorem 4.1. Under the Prior Condition and the Kernel Condition there are con-

stants C1 and C2 such that

‖fλ − fρ‖L2
ρX
≤ C1λ

min{β
2
, 1}, ‖L∗K(fλ − fρ)‖H1 ≤ C2λ

min{ 1
4
+β

2
, 1}.
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4.2 Estimate of sample error

To estimate the sample error, we adopt the following decomposition used [25]:

fz − fλ =
(
λI + TST∗S

)−1[
TS(T∗y − T∗Sfλ)− LK̃(fρ − fλ)

]
=
(
λI + TST∗S

)−1 [
TS
(
T∗y − T∗Sfλ − L∗K(fρ − fλ)

)
+ (TS − LK)L∗K(fρ − fλ)

]
=
(
λI + TST∗S

)−1
TS∆ +

(
λI + TST∗S

)−1
(TS − LK)L∗K(fρ − fλ),

where

∆ =
1

m

m∑
i=1

(yi − fλ(xi))K(xi, ·)− L∗K(fρ − fλ).

Note that both fz and fλ are in H0. By the fact that L
1
2
K0

is an isometric mapping

between L2
ρ
X

and H0, we have

‖fz − fλ‖L2
ρ
X

= ‖L
1
2
K0

(fz − fλ)‖H0 ≤ ‖L
1
2
K0

(
λI + TST∗S

)−1
TS‖10‖∆‖H1

+ ‖L
1
2
K0

(
λI + TST∗S

)−1‖00‖TS − LK‖10‖L∗K(fρ − fλ)‖H1 .

We next estimate the right hand side term by term.

It is easy to check that
(
λI+TST∗S

)−1
TS = TS

(
λI+T∗STS

)−1
. So we can write

L
1
2
K0

(
λI + TST∗S

)−1
TS = L

1
2
K0
TS
(
λI + T∗STS

)−1
=L

1
2
K0

(TS − LK)
(
λI + T∗STS

)−1
+ L

1
2
K0
LK(λI + T∗STS)

)−1
=L

1/2
K0

(TS − LK)
(
λI + T∗STS

)−1
+ L

1
2
K0
LK(λI + LK̂

)−1
+ L

1
2
K0
LK(λI + LK̂

)−1
(LK̂ − T∗STS)(λI + T∗STS)−1

For each g =
∞∑
l=1

glψl ∈H1,

L
1
2
K0
LK(λI + LK̂

)−1
g =

∞∑
l=1

σ
3/2
l

λ+ σ2
l

glφl ∈H0.

This gives ‖L
1
2
K0
LK(λI+LK̂

)−1‖10 ≤ λ−
1
4 . Thus ‖L

1
2
K0

(
λI+TST∗S

)−1
TS‖10 is bounded

by

≤ λ−
1
4 +

[
λ−

1
4‖LK̂ − T∗STS‖11 + κ‖LK − TS‖10

] ∥∥∥(λI + TST∗S
)−1∥∥∥

11
. (4.2)
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Similarly we can prove that

‖L1/2
K0

(
λI + TST∗S

)−1‖00 ≤ λ−3/4 + λ−3/4‖LK̃ − TST∗S‖00‖(λI + TST∗S
)−1‖00. (4.3)

For ‖∆‖H1 . Denote ξ(z) = (y − fλ(x))K(x, ·) to be a H1 valued random variable.

Then Eξ = L∗K(fρ − fλ) and

∆ =
1

m

m∑
i=1

ξ(zi)− LK(fρ − fλ) =
1

m

m∑
i=1

ξ(zi)− Eξ.

By Lemma 3.1 and the fact ‖K(xi, ·)‖H1 ≤ κ, for any δ > 0

E‖∆‖2H1
=

1

m2

m∑
i=1

E‖ξ(zi)‖2H1
+

2

m2

∑
i<j

E〈ξ(zi), ξ(zj)〉H1 − ‖Eξ‖2H1

≤ 1

m
E‖ξ‖2H1

+
30

m2

∑
i<j

α
δ

2+δ

j−i
(
E‖ξ‖2+δH1

) 2
2+δ

≤ κ2

m
E(y − fλ(x))2 +

30κ2

m

(
m−1∑
l=1

α
δ

2+δ

l

)(
E|y − fλ(x)|2+δ

) 2
2+δ . (4.4)

Since Ey2 ≤ 2cM2 and ‖fλ‖2L2
ρ
X

≤ ‖fρ‖2L2
ρ
X

≤ Ey2 we have

E(y − fλ(x))2 ≤ 2(Ey2 + ‖fλ‖2L2
ρ
X

) ≤ 8cM2.

Let dδe denote the minimal integer that is equal to or larger than δ. By (1.2)

(
E|y|2+δ

) 2
2+δ ≤

(
E|y|2+dδe

) 2
2+dδe ≤

(
c(2 + dδe)!M2+dδe) 2

2+dδe ≤ c(3 + δ)2M2.

For fλ, we have

|fλ(x)| ≤ κ‖fλ‖H0 = κ‖(λI + L2
K0

)−1L
3
2
+β

K0
L−βK0

fρ‖L2
ρ
X
≤ C3κλ

min{ 2β−1
4

, 0}

where C3 = ‖L−min{β, 1
2
}

K0
fρ‖L2

ρ
X

. Thus

(E|fλ(x)|2+δ)
2

2+δ ≤
(
‖fλ‖2L2

ρ
X

Cδ
3κ

δλδmin{ 2β−1
4

, 0}
) 2

2+δ ≤ C4λ
min{ δ(2β−1)

2(2+δ)
, 0}.

with C4 = (2cM2Cδ
3κ

δ)
2

2+δ ≤ 2cM2(C2
3κ

2 + 1). Then we get

(
E|y − fλ(x)|2+δ

) 2
2+δ ≤ 2

((
E|y|2+δ

) 2
2+δ +

(
E|fλ(x)|2+δ

) 2
2+δ

)
≤ C5

(
1 + δ2 + λmin{ δ(2β−1

2(2+δ)
, 0}
)
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where C5 = max{20cM2, 2C4}. We finally obtain

E‖∆‖2H1
≤ C6m

−1

[
1 +

(
1 + δ2 + λmin{ δ(2β−1)

2(2+δ)
, 0}
)(m−1∑

l=1

α
δ

2+δ

l

)]
(4.5)

Plugging (4.2), (4.3), (4.5) into (4.1) and applying Theorem 4.1, Proposition 3.2,

we can obtain the sample error bound. The regularization parameter λ depends on the

sample size m, λ = λ(m), and tends to zero as m→ +∞. Thus, we assume 0 < λ ≤ 1

in the sequel.

Theorem 4.2. Suppose that 0 < λ ≤ 1. For any δ > 0 and 0 < η < 1, with confidence

1− η, the sample error ‖fz − fλ‖L2
ρX

is bounded by

C7

λ− 1
4 (mη)−

1
2

1 +
(

1 + δ + λmin{ δ(2β−1)
4(2+δ)

, 0}
)√√√√m−1∑

l=1

α
δ

2+δ

l

+ λmin{β+1
2
, 5
4
}


provided that

8κ4

√√√√1 + 30
m−1∑
l=1

αl ≤ λ
√
mη. (4.6)

The constant C7 is given as 1
2κ2

max{(4κ2 + κ)
√

2C6, C2}.

5 Learning rates

Combining the approximation error bound in Theorem 4.1 and the sample error bound

in Theorem 4.2, we can deduce the learning rates when the mixing coefficients decays

in certain rate. For this purpose, we need the following simple facts, for m > 3,

m−1∑
`=1

`−t ≤


1

1−tm
1−t if 0 < t < 1;

2 logm if t = 1;

t
t−1 if t > 1.

(5.1)

We have the following learning rate estimates.

Theorem 5.1. Suppose that the α-mixing coefficients satisfy a polynomial decay, i.e.,

αi ≤ ai−t for some a > 0 and t > 0. Then by choosing λ = λ(m) appropriately, for m

large enough we have with confidence 1− η,

13



(1) if 0 < t ≤ 1,

‖fz − fρ‖L2
ρ
X

=


O
(
m−

tβ
4 (logm)

β
2

)
when 0 < β < 3

2

O
(
m−

tβ
2β+1 (logm)2

)
when 3

2
≤ β ≤ 2

O
(
m−

2t
5 (logm)2

)
when β > 2.

(2) if t > 1,

‖fz − fρ‖L2
ρ
X

=


O(m−

β
4 (logm)

β
2 ) when 0 < β < 3

2

O(m−
β

2β+1 ) when 3
2
≤ β ≤ 2;

O(m−
2
5 ) when β > 2.

Proof.

Case (1): 0 < t ≤ 1. For 0 < t < 1, by (5.1) and αi ≤ ai−t,√√√√m−1∑
l=1

α
δ

2+δ

l ≤ 1√
1− t

a
δ

4+2δm
2+δ−δt
4+2δ ,

√√√√1 + 30
m−1∑
l=1

αl ≤
√

1 + 30a

1− t
m

1−t
2 .

By Theorem 4.1 and Theorem 4.2, with confidence 1− η, we have

‖fz − fρ‖L2
ρX

= O
(
λmin{β

2
,1} + (2 + δ)η−

1
2λmin{ δ(2β−1)

4(2+δ)
, 0}− 1

4m−
δt

4+2δ

)
.

When 0 < β < 3
2
, the desired learning rate can be achieved by choosing λ =

m−
t
2 logm and δ > 0 such that min{ δ(2β−1)

4(2+δ)
, 0} − 1

4
+ δ

2+δ
= min{β

2
, 1}. Under these

choices the condition (4.6) is easy to check since with m big enough

8κ4(1 + 30a)
1
2√

η(1− t)
≤ logm.

When β ≥ 3
2
, we choose δ=logm which gives δ

2+δ
=1− 2

2+logm
and m

δ
2+δ ≥ m

e2
. The

desired convergence rate is obtained by taking λ = m−r logm with r = 2t
2min{β, 2}+1

.

Since r ≤ t
2
, the condition (4.6) also holds when m is big enough.

If t = 1, √√√√1 + 30
m−1∑
l=1

αl ≤
√

2(1 + 30a)
√

logm.

14



We see the above choices for λ still ensure the condition (4.6) for m large enough.

Hence the rates can be verified too.

Case (2): t > 1. When 0 < β ≤ 3
2
, let λ = m−

1
2 logm. Then, when m is big enough

such that
8κ4(1 + 30a)

1
2

√
t√

η(t− 1)
≤ logm,

condition (4.6) holds. Choosing δ satisfying δ
2+δ

= (1+2β)
4t+min{2β−1, 0} yields δt

2+δ
< 1 and√√√√m−1∑

l=1

α
δ

2+δ

l ≤
√

2 + δ

2 + δ − δt
a

δ
4+2δm

2+δ−δt
4+2δ .

Thus with confidence 1− η, we have

‖fz − fρ‖L2
ρX

= O
(
λ
β
2 + η−

1
2λmin{ δ(2β−1)

4(2+δ)
, 0}− 1

4m−
δt

4+2δ

)
= O

(
m−

β
4 (logm)

β
2

)
.

When β > 3
2
, choose δ > 2

t−1 and fix it. With confidence 1− η,

‖fz − fρ‖L2
ρX

= O
(
λmin{β

2
, 1} + η−

1
2λ−

1
4m−

1
2

)
.

Take λ = m−
2

1+2min{β, 2} . When

8κ4
√
t(1 + 30a)√
η(1− t)

≤ m
min{β, 2}− 3

2
1+2min{β, 2} ,

condition (4.6) holds. The desired learning rate can be easily verified.

Remark 5.2. Indefinite kernel network (1.1) with independent sampling was studied in

[21,25]. The learning rates deudced in [21, Corollary 2.4] is m−
β

2β+6 for 0 < β ≤ 2, m−
1
5

for β ≥ 2. This conclusion was improved by [25, Theorem 5.6] to m−
β
4 for 0 < β ≤ 1

2
,

m−
β

2β+3 for 1
2
< β ≤ 2, and m−

2
7 for β ≥ 2. The rate analysis for independent sampling

corresponds to the case t = ∞ for which the rates in Theorem 5.1 is clearly faster.

Therefore, our new rate analysis not only provides rates for dependent sampling, but

also improves the existing rate analysis in [21, 25] for independent sampling.
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